

Co-funded by the Horizon 2020

Framework Programme of the European Union

Deliverable 5.4
First Version of TeNDER Platform

Work Package 5: Services Integration and Technical Validation

affecTive basEd iNtegrateD carE for betteR Quality of Life: TeNDER Project

Grant Agreement ID: 875325

Start date: 1 November 2019

End date: 31 October 2022

Funded under programme(s): H2020-SC1-DTH-2018-2020/H2020-SC1-DTH-2019

Topic: SC1-DTH-11-2019 Large Scale pilots of personalised & outcome based integrated care

Funding Scheme: IA - Innovation action

Ref. Ares(2021)5376646 - 31/08/2021

D5.4 – First version of TeNDER Platform

P a g e 2 | 99

Disclaimer
This document contains material, which is the copyright of certain TeNDER Partners, and may

not be reproduced or copied without permission. The commercial use of any information

contained in this document may require a license from the proprietor of that information.

The reproduction of this document or of parts of it requires an agreement with the proprietor

of that information. The document must be referenced if used in a publication.

The TeNDER consortium consists of the following Partners.

Table 1 - Consortium Partners List

No

Name

Short name

Country

1 UNIVERSIDAD POLITECNICA DE MADRID UPM Spain

2 MAGGIOLI SPA MAG Italy

3 DATAWIZARD SRL DW Italy

4 UBIWHERE LDA UBI Portugal

5 ELGOLINE DOO ELGO Slovenia

6
ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS

ANAPTYXIS
CERTH Greece

7 VRIJE UNIVERSITEIT BRUSSEL VUB Belgium

8
FEDERATION EUROPEENNE DES HOPITAUX ET

DES SOINS DE SANTE
HOPE Belgium

9 SERVICIO MADRILENO DE SALUD SERMAS Spain

10 SCHON KLINIK BAD AIBLING SE & CO KG SKBA Germany

11
UNIVERSITA DEGLI STUDI DI ROMA TOR

VERGATA
UNITOV Italy

12

SLOVENSKO ZDRUZENJE ZA POMOC PRI

DEMENCI - SPOMINCICA ALZHEIMER

SLOVENIJA

SPO Slovenia

13 ASOCIACION PARKINSON MADRID APM Spain

D5.4 – First version of TeNDER Platform

P a g e 3 | 99

Document Information

Project short name and Grant Agreement ID TeNDER (875325)

Work package WP5

Deliverable number D5.4

Deliverable title First version of TeNDER platform

Responsible beneficiary MAG

Involved beneficiaries UPM, DW, UBI, ELG, CERTH

Type1 DEM

Dissemination level2 PU

Contractual date of delivery 31 August 2021

Last update 31 August 2021

1 R: Document, report; DEM: Demonstrator, pilot, prototype; DEC: Websites, patent fillings, videos,

etc.; OTHER; ETHICS: Ethics requirement; ORDP: Open Research Data Pilot.
2 PU: Public; CO: Confidential, only for members of the consortium (including the Commission

Services).

D5.4 – First version of TeNDER Platform

P a g e 4 | 99

Document History

Version Date Status Authors, Reviewers Description

v 0.1 16/06/2021 Draft Panos Karkazis

(MAG)

Project deliverable

template.

v 0.2 09/07/2021 Draft Thanasis

Makropoulos,

Dimitris

Papadopoulos

(CERTH)

Information on 5.1 and

5.1.1

V 0.3 13/07/2021 Draft Luís Santos (UBI) Part of section 5.2.2 and

5.2.3

V0.4 20/07/2021 Draft Gustavo Hernández

(UPM)

General review and

contributions to 5.1.2

V0.5 22/07/2021 Draft Luís Santos (UBI) Sections 5.2.5 and 5.2.8

without tests

V0.6 29/07/2021 Draft Luís Santos (UBI) Adding tests in Section

5.2.5

V0.7 1/08/2021 Draft Panos Karkazis

(MAG)

Add content on

monitoring section

V0.8 4/08/2021 Draft Luís Santos (UBI) Adding tests in Section

5.2.3

V0.9 5/08/2021 Draft Luís Santos (UBI) Adding tests in Section

5.2.2

V0.10 6/08/2021 Draft Luís Santos (UBI) HL7 API Description

V0.11 16/08/2021 Draft Panos Karkazis

(MAG)

General review

contributions

V0.12 25/08/2021 Draft Paride Criscio (DW) Contribution section 5.3

V0.13 26/08/2021 Draft Panos

Karkazis (MAG)

Review, Editing

V0.14 30/08/2021 Draft Τhanasis

Makropoulos,

Dimitris

Papadopoulos

(CERTH)

Review, Editing

V1.0 31/08/2021 Final Gustavo Hernández Final peer Review

D5.4 – First version of TeNDER Platform

P a g e 5 | 99

Acronyms and Abbreviations

Acronym/Abbreviation Description

APIs Application Programming Interfaces

ATDD Acceptance Dest Driven Development

CD Continuous Delivery

CI Continuous Integration

DMS Data Management System

EHR Electronic Health Record

FHIR Fast Healthcare Interoperability Resources

GUI Graphical User Interface

HAPI HL7 Application Programming Interface

HL7 Health Level 7

HLS High-level Services

HTTP Hypertext Transfer Protocol

LLS Low Level Subsystem

NBI North Bound Interface

QoS Quality of Service

REST Representational State Transfer

SBI South Bound Interface

TeNDER affecTive basEd iNtegrateD carE for betteR Quality of Life

VM Virtual Machine

D5.4 – First version of TeNDER Platform

P a g e 6 | 99

Contents

1 INTRODUCTION (MAG) 12

2 Hosting Infrastructure Components (MAG) 14

2.1 CI/CD workflow 14

2.1.1 CI/CD Pipelines 15

2.1.1.1 Container build 16

2.1.1.2 Unit Tests 17

2.1.1.3 Service deployment 17

2.1.1.4 Integration Tests 17

2.1.1.5 Create production images 18

2.2 Development Environment 20

2.3 Stage Environment 20

2.4 Production Environment 21

3 TESTING AND VALIDATION (MAG) 23

3.1 Testing tools 23

3.2 Integration tests 24

3.3 Qualification test 25

4 MONITORING RESOURCES (MAG) 29

4.1 Stage and Production environments 34

4.2 TeNDER HLS services 36

4.3 TeNDER LLS services 36

4.4 Alerting 38

5 TeNDER PLATFORM 41

5.1 Low Level Subsystem (CERTH – UPM - DW) 41

5.1.1 HeTRA server and client (CERTH) 42

5.1.2 Abnormal detection Module (UPM) 46

5.2 High Level Subsystem 48

5.2.1 Proxy and Authorization server (MAG) 48

5.2.2 Message broker and Consumer (MAG - UBI) 54

5.2.3 Electronic Health Record server (UBI) 58

5.2.4 Remote Document DB (MAG) 63

5.2.5 Web GUI (UBI) 66

5.2.6 Smart Band Server (UPM) 74

5.2.8 Questionary Server (UBI) 80

D5.4 – First version of TeNDER Platform

P a g e 7 | 99

5.3 Hybrid Mobile application (DW) 83

6 APPLICATION PRΟGRAMABLE INTERFACES 88

6.1 EHR API (HL7) (UBI) 90

6.2 Remote DB Rest APIs (MAG) 93

6.3 Smart Band APIs (UPM) 94

7 CONCLUSIONS 96

REFERENCES 97

D5.4 – First version of TeNDER Platform

P a g e 8 | 99

List of Figure

Figure 1 TeNDER's GitLab login ... 14

Figure 2 TeNDER GitLab users - projects .. 15

Figure 3 CI/CD workflow ... 15

Figure 4 CI/CD pipeline ... 16

Figure 5 Job execution output .. 18

Figure 6 Error notification mail ... 19

Figure 7 TeNDERs private docker instance ... 19

Figure 8 Docker Hub TeNDER repository .. 20

Figure 9 TeNDER services running on stage env .. 21

Figure 10 TeNDER services running on production env ... 22

Figure 11 Periodic integration tests.. 24

Figure 12 Integration test execution .. 25

Figure 13 TeNDER platform consuming rate (Scenario 1) .. 26

Figure 14 TeNDER platform consuming rate (Scenario 2) .. 27

Figure 15 TeNDER platform consuming rate (Scenario 3) .. 28

Figure 16 Monitoring tools ... 29

Figure 17 Monitoring framework architecture... 30

Figure 18 Prometheus chart ... 31

Figure 19 Performance metrics from LLS ... 31

Figure 20 Prometheus Alertmanager ... 32

Figure 21 TeNDER dashboards on Grafana .. 32

Figure 22 Netdata web GUI .. 33

Figure 23 List of running containers in cAdvisor GUI ... 34

Figure 24 Recourse allocation in the production environment .. 35

Figure 25 Recourse allocation in the stage environment ... 35

Figure 26 Recourse allocation per running container .. 36

Figure 27 Metrics from SPOMINCICA installation site .. 37

Figure 28 Rules status in Prometheus server ... 38

Figure 29 Server CPU utilization rule .. 39

Figure 30 Server memory utilization rule ... 39

Figure 31 Server storage utilization 80% .. 39

Figure 32 Filesystem run-out prediction rule ... 39

Figure 33 Container CPU usage rule ... 40

Figure 34 Container memory usage rule .. 40

Figure 35 Container disk usage rule ... 40

Figure 36 TeNDER Low Level Subsystem .. 41

Figure 37 SenseLib schematic description .. 42

Figure 38 HeTra Client GUI. .. 43

Figure 39 HeTra Server GUI. ... 44

Figure 40 Unit Tests execution ... 46

Figure 41 Unit Test execution results ... 46

Figure 42 Abnormal detection module .. 47

Figure 43 TeNDER secure proxy server... 49

Figure 44 Clients on TeNDER realm. ... 50

D5.4 – First version of TeNDER Platform

P a g e 9 | 99

Figure 45 Traefik health dashboard .. 50

Figure 46 Traefik backend services ... 51

Figure 47 CKAN test results .. 83

Figure 48 TeNDER's App Sections ... 84

Figure 49 An example of API response form console ... 86

Figure 50 An example of API response form Console .. 86

Figure 51 Unit test to check a new reminder creation ... 87

Figure 52 Unit test to check an updated of an event in the Reminder section 87

Figure 53 Unit test to check vocal reminder .. 87

Figure 54 Unit test to check speak phrase event ... 88

Figure 55 Unit test to check reminder deletion ... 88

Figure 56 TeNDER's documentation server .. 89

Figure 57 API documentation of the HAPI FHIR server .. 90

Figure 58 HAPI FHIR server API schemas .. 91

Figure 59 Patient resource structure (from: https://www.hl7.org/fhir/patient.html) 92

Figure 60 Part of Postman collection.. 93

Figure 61 API documentation of the Remote Mongo DB ... 94

Figure 62 API documentation of the Smart Band API... 95

D5.4 – First version of TeNDER Platform

P a g e 10 | 99

List of Tables

Table 1 - Consortium Partners List ... 2

Table 2 Stage server flavor ... 21

Table 3 Production server flavor .. 22

Table 4 Monitoring server flavor .. 29

Table 5 Senselib test ... 44

Table 6 Client test ... 45

Table 7 Server test .. 45

Table 8 Mongo connectivity test. ... 48

Table 10 Test containers status .. 52

Table 11 Test Keycloak configuration ... 53

Table 12 Test Proxy and Authorization servers endpoints ... 53

Table 13 Mongo HTTP API connectivity test... 65

Table 14 Mongo HTTP API Rehabilitation test. ... 65

Table 15 Mongo HTTP API smart band test. ... 66

Table 16 Mongo HTTP API ABD test. .. 66

Table 17 Utils Component for Custom Calendar Day ... 70

Table 18 Utils Component for Custom List Item .. 70

Table 19 Utils Component for Custom Calendar Day ... 71

Table 20 Utils for Admin’s Container .. 71

Table 21 Utils for Language Selector’s Container ... 71

Table 22 Utils for Localization’s Container ... 71

Table 23 Utils for Patient Info’s Container ... 72

Table 24 Utils for Safety and Wellbeing’s Container .. 72

Table 25 Utils for Sleep Diary’s Container .. 73

Table 26 Utils for List Devices Admin’s Scenes ... 73

Table 27 Utils for Patient List Doctor’s Scenes ... 73

Table 28 Utils for Home’s Scenes ... 74

Table 29 Utils for Root .. 74

Table 30 Smart Band backend test ... 76

Table 31 Database test ... 77

Table 31 Recommender HTTP API test ... 79

Table 33 PostgreSQL DB test .. 80

D5.4 – First version of TeNDER Platform

P a g e 11 | 99

Executive Summary

This deliverable describes the first version of the TeNDER platform as an integrated open

ecosystem based on the requirements defined in WP1 and WP2. It also discusses the tools

that are used to support Continuous Integration (CI)/Continuous Delivery (CD) and testing in

the context of the Tasks 5.4 and 5.5. Moreover, a brief description for each component of

TeNDER platform is provided and a detailed presentation of the selected tools and the

development, production, and monitoring environments that are used is given.

These tools support the platform development and guarantee the allocation of the

appropriate resources for the deployment and execution of the services. Furthermore, this

document provides the definition of several types of manual and automated testing

procedures on component level as well as integration and qualification tests of the system

platform. The first results from integration and validation tests prove that the platform is

functional and meets the requirements for the first wave of piloting. As the development of

the platform is in progress, the final version of the TeNDER platform and the future updates

regarding the testing and validation procedures will be presented in the D5.5, which is the

last deliverable of the WP5.

D5.4 – First version of TeNDER Platform

P a g e 12 | 99

1 INTRODUCTION

This document presents the selected set of tools for supporting software development,

technical validation and deployment of the TeNDER platform, based on CI/CD approach and

a comprehensive resource allocation monitoring system.

The adoption of the CI/CD approach for the TeNDER software development enhances the co-

design process and minimizes the elapsed time between the definition of the software

requirements and their integration to the next software release, the so called “cycle time”

[1]. In particular, the CI enables developers to regularly merge their code changes into a

central repository and trigger automated procedures for building and testing their

components in order to address bugs quickly and improve software quality. On the other

hand, CD is the next step of CI, that enables the delivery of the component for system and

integration testing and then for the release in production. This does not mean that every

change is delivered automatically in production, but that there is a testing mechanism that

can ensure that every change is applicable at any time [2]. According to the best practices for

CI [3], the following tools should be part of a state-of-the-art CI framework:

• a tool for source version control

• a tool for automatic building, dependency checking and automatic testing

• a tool to keep tracking of the issues in order to fix them immediately

• a tool for automatic deployment, providing the capability to deploy on demand any

version of software to any environment

In this context, pipelines have been defined for each one of the components which describe

a typical workflow with the steps that source code goes through to make its way to

production, and involves code building, testing, and deploying to any environment. All the

code is kept on a binary repository that manages the version control and provides all the

latest versions of the components for deployment on the staging environment, execution of

the integration and quality acceptance tests before being deployed on the production

environment. This phase is part of the CD and is done by specific scripts for packaging,

deploying and changing configuration often called as configuration management tools. The

most appropriate tools for the CD are (a) repository for binary distribution; (b) tools for

deployment and test applications in any environment and (c) report mechanism for providing

feedback to the developers and testers.

Furthermore, the knowledge of the utilization status of the available computational resources

in every environment is crucial to guarantee that any service of the platform has the

appropriate resources to function properly. In addition, the resource allocation per

application is also interesting information for the detection of potential bugs like memory

leaks etc. Therefore, the design and deployment of a comprehensive monitoring solution as

an additional tool is mandatory for the validation of the platform and the assurance of the

provided Quality of Service (QoS).

The document is structured as follows:

Section 1 is the introduction of the deliverable discussing the contribution and scope of the

document.

Section 2 presents the CI/CD tools which are used for the development of the TeNDER

platform as well as the different deployment environments.

D5.4 – First version of TeNDER Platform

P a g e 13 | 99

Section 3 presents the testing procedures that have been implemented until now, focusing

on the first version of system integration and qualification tests.

Section 4 describes the tools and the architecture of the monitoring system that has been

deployed for the monitoring of resource allocation.

Section 5 provides a brief technical description of the components of the TeNDER platform

focusing on the integration of each one of them with the CI/CD mechanism for automated

build, test, and deployment.

Section 6 presents the central documentation server which provides documentation for all

TeNDER RESTful APIs.

Section 7 concludes the document.

D5.4 – First version of TeNDER Platform

P a g e 14 | 99

2 Hosting Infrastructure Components

This section presents the hosting infrastructure and the tools used for the development,
testing, and deployment of the TeNDER services. TeNDER uses DevOps3 and CI/CD
approaches that enable the exploitation of the platform as an integrated ecosystem based on
the requirements set by the WP6 regarding the three phases of piloting. Building on top of
these technologies TeNDER enables the management and control of the DevOps cycle for the
continuous deployment and integration of added value services and their components.
However, in order to support the above-mentioned activities, a consistent infrastructure was
created which supports virtualisation of HW resources, i.e. processing power, memory,
storage and network resources. For this reason, the approach used is the introduction of
incremental steps towards integration, validation and testing of TeNDER components
exploiting three environments (aka infrastructure versions). These infrastructures are: (a)
Development infrastructure; (b) Stage infrastructure and (c) Production infrastructure. This
section discusses mostly the deployment of these infrastructures as well as the description of
the tools that are used in the context of TeNDER in MAG premises.

2.1 CI/CD workflow

The core component of the development process TeNDER is a private instance of GitLab [4]
which provides a collaborative environment for software development, version control and
CI/CD management. The private instance of the GitLab is hosted on a dedicated Virtual
Machine (VM) in MAG cloud infrastructure in which every developer has two factor
authorized access (Figure 1) and she/he can create her/his own repository and add other
users as members. GitLab also provides a complete CI/CD framework which uses pipelines.

Figure 1 TeNDER's GitLab login

3 Gitlab DevOps approach. Available at: DevOps | GitLab

https://about.gitlab.com/topics/devops/

D5.4 – First version of TeNDER Platform

P a g e 15 | 99

Figure 2 TeNDER GitLab users - projects

At this point, there are 28 active projects and 40 developers who created code for the TeNDER
platform (Figure 2). A generic view of the CI/CD workflow is shown Figure 3, in which we can
see how the GitLab tool in integrated with the stage and production environments based on
CI/CD pipelines.

Figure 3 CI/CD workflow

2.1.1 CI/CD Pipelines

Every time a developer pushes small code chunks to a project hosted in a Git repository,
she/he triggers a pipeline (Figure 4) of scripts to build, test, and validate the code changes
before merging them into the main branch. Then, the CI/CD framework deploys the new
version of the component to stage environment.

D5.4 – First version of TeNDER Platform

P a g e 16 | 99

Figure 4 CI/CD pipeline

Each pipeline consists of a set of jobs which can also be triggered manually through the web
interface by pressing the appropriate button. When the pipeline is triggered, the job is
assigned to the runner process which links to the specific repository and executes it in
environment of our choice. The output of the job is displayed in real time to the GitLab web
interface. This set of steps can be shifted or skipped depending on developer's requirements.
Next, we describe in detail the different steps of a typical the CI/CD pipeline.

2.1.1.1 Container build

TeNDER uses Docker containers as host for its components, so the first step is to build the

images for all components that are developed in the repository and push them to the private

docker registry of TeNDER. The building of a Docker container can be scripted as follows:

Where:

• docker build: The instruction to build the container.

• -f Dockerfile: The location of the Dockerfile.

build_images:
 only:
 refs:
 - master
 stage: build
 script:
 - docker build -t hapi-fhir-server -f dockerfile/stage/Dockerfile .
 - docker tag hapi-fhir-server tender-registry:5000/hapi-fhir-server:sta
 - docker push tender-registry:5000/hapi-fhir-server:sta
 tags:
 - stage

D5.4 – First version of TeNDER Platform

P a g e 17 | 99

• -t tender-registry:5000/<container_image_name>: The name of the container
image. The first part is the internal docker registry, and the second part is the image
name.

2.1.1.2 Unit Tests

During the unit test stage developers can perform software testing of an individual unit or
component. This kind of tests isolates a section of code and verify its correctness. The use of
containers has a significant advantage in designing and executing unit tests. The developer is
not required to create mock-ups of each component as it depends on his implementation.
For example, in case of databases, sometimes it is time expensive to build a mock-up. With
Docker, it is quick and straightforward to just start a docker container with the database and
connect the under-test container to it. Once a container passes the unit tests, the test
database can be easily removed.

2.1.1.3 Service deployment

During the deployment stage the containers of each service are deployed on the stage
environment. The containers can be started separately, or the developers can use
technologies like docker-compose, docker swarm etc.

Where:

• Docker-compose up: The instruction to start the docker-compose.

• -f docker-compose-stage.yml: The location of the docker compose file.

2.1.1.4 Integration Tests

After the successful deployment of the service in stage environment the developers can

trigger other CI/CD pipelines using the provided API from the GitLab. In TeNDER we use this

functionality to execute end-to-end integration tests after the deployment of each service in

the stage env. More details regarding the integration tests are available in section 3.2.

deploy_hapi_fhir:
 only:
 refs:
 - master
 stage: deploy
 script:
 - docker-compose -f docker-compose-stage.yml up -d hapi-fhir-server
 tags:
 - stage

run_test:
 stage: int-test
 script:
 - apk update
 - apk add curl
 - curl -s -X POST
 -F token=0f2c5b4019231cd48f49fe229746f2 \

 -F ref=master \
 -F "variables[TEST_SCRIPT]=int-test-hfir.sh" \
https://tendergitlab.maggiolicloud.it/api/v4/projects/32/trigger/pipeli
ne

 tags:
 - stage

D5.4 – First version of TeNDER Platform

P a g e 18 | 99

Where:

• curl POST <test_uri>: Trigger integration test through API
• -F token=<token>: Authorization token

• -F ref=<branch>: Repository branch

• -F “variables[<variable_name>]=<value>”: Set variable value

2.1.1.5 Create production images

The images that are used in the production env are created from the last job of the pipeline

of each repository. This job is triggered manually from the developer each time she/he

decides to promote the current version of his service from the stage to the production

environment. During this stage, the latest version of the stage images are tagged with the

appropriate version number and they are pushed to private docker registry.

The history of the executed jobs as well the outputs logs are kept by the CI/CD tool and are
available to the developer at any time (Figure 5).

Figure 5 Job execution output

create_prod_images:
 only:
 refs:
 - master
 stage: create_p_images
 script:
 - docker rmi tender-registry:5000/hapi-fhir-server:prod || true
 - docker build -t tender-registry:5000/hapi-fhir-server:prod -f
dockerfile/prod/Dockerfile .
 - docker push tender-registry:5000/hapi-fhir-server:prod
 when: manual
 tags:
 - stage

D5.4 – First version of TeNDER Platform

P a g e 19 | 99

In case an error occurs during the execution of one of the jobs, the entire pipeline fails and a
notification email is sent to the involved users (developers/maintainers etc) who triggered
the pipeline either by pushing new code or manually through web interface (Figure 6).

Figure 6 Error notification mail

Following these methodologies, developers are able to catch bugs and errors early in the
development cycle and ensure that all the code deployed to production complies with the
established code standards.
Another component of the CI/CD framework is private Docker registry (Figure 7) which is used
for the storage of different versions of the TeNDER components for both stage and production
environments. It is worth to mention that in TeNDER we also created a public repository
(Figure 8) for container images hosted in Docker Hub for the services running on the Low
Level Sub System (LLS).

Figure 7 TeNDER’s private docker instance

D5.4 – First version of TeNDER Platform

P a g e 20 | 99

Figure 8 Docker Hub TeNDER repository

2.2 Development Environment

The Development environment is a workspace for developers to test anything they want

without worrying about affecting any other users or developers working on a live deployment.

In most cases, a development environment is set up on a local server or on the machine that

developer uses, so the source code is ready to be executed and modified if needed. So, in

TeNDER, developers use the tools and technologies of their choice (i.e. programming

language, frameworks, IDE etc) and build the appropriated docker containers. Next, the

service is executed in their local development environment.

2.3 Stage Environment

The Stage environment is hosted on the MAG cloud infrastructure, and it consist of VMs in

which all the High-level Services (HLS) of TeNDER are deployed and tested based on the CI/CD

framework provided from the GitLab repository. Based on specific CI/CD pipelines each

component can be built, deployed and tested in the stage env using the Gitlab runners that

are installed in the stage environment server. This approach provides to the developers an

area where the entire TeNDER platform is deployed, in which any new version of a component

can be deployed, tested, and validated before the deployment in the production. The stage

environment is scalable, and it can be enhanced with more resources by adding new servers

as the TeNDER platform grows. Table 2 shows the predefined flavor of the servers that are

host the stage environment and Figure 9 presents the list of the running services in stage

server.

D5.4 – First version of TeNDER Platform

P a g e 21 | 99

Table 2 Stage server flavor

Server flavor

vCPUs 4

RAM memory 8GB

IP address 185.146.161.245

Storage 120GB

#NICs 2

OS Centos 7

Software Gitlab runner
Docker/Docker Compose

Figure 9 TeNDER services running on stage env

2.4 Production Environment

The production environment is also hosted on the MAG cloud infrastructure, and it consists

of virtual machines in which the stable version of the TeNDER platform is deployed and

offered to the end users. The deployment is based on a CI/CD pipeline especially created of

this process and the platform can be deployed either all at once or we can manually deploy

each component separately. In any case, the update process can be done without affecting

the user’s data because all databases are mounted on virtual volumes which are not affected

from the redeployment of the components. The CI/CD pipeline is kept in a separate repository

in TeNDER’s private Gitlab called tnd-production [5]. Following the same design approach of

the stage, the production environment, this is also scalable and it can easily be scaled up by

adding new servers to provide the appropriate resources to ensure the QoS level to the users.

Table 3 shows the predefined flavor of the servers that host the production environment and

Figure 10 presents the list of the running services in stage server.

D5.4 – First version of TeNDER Platform

P a g e 22 | 99

Table 3 Production server flavor

Server flavor

vCPUs 6

RAM memory 12GB

IP address 185.146.161.244

Storage 160GB

#NICs 2

OS Centos 7

Software Gitlab runner
Docker/Docker Compose

Figure 10 TeNDER services running on production env

D5.4 – First version of TeNDER Platform

P a g e 23 | 99

3 TESTING AND VALIDATION

This section discusses the tools that were evaluated to support the CI/CD workflow and to
help the developers not only to monitor their deployments in stage and production
environments but also to evaluate the functionality and the performance of the platform.
These tools, include available open-source solutions and frameworks used for automation,
validation and testing. During the first year of the project, we introduced a set of new tools
that are mentioned in the following section. Most of the tools require expertise, and a
learning curve to be digested and adopted by the team members. Nevertheless, as the
development on new components and services is an ongoing procedure, we focused on
practicing and evaluating the most known tools in order to be able to include them in the
testing procedure as the TeNDER platforms expands.

3.1 Testing tools

As part of the followed methodology, several open-source tools and frameworks were
considered. This section presents a brief overview of the frameworks and tools considered
and the ones finally used.
The considered frameworks were:

• Watir [6] stands for “Web Application Testing in Ruby” and it is an open source Ruby
library for automating tests. Watir interacts with a browser the same way people do
clicking links, filling out forms and validating text.

• Robot [7] is a generic test automation framework for acceptance testing and
Acceptance Dest-Driven Development (ATDD). It has easy-to-use tabular test data
syntax and it utilizes the keyword-driven testing approach. Its testing capabilities can
be extended by test libraries implemented either with Python or Java, and users can
create new higher-level keywords from existing ones using the same syntax that is
used for creating test cases.

• pyTest [8] is a python-based test framework for testing applications and python
libraries. It is used from command line and requires tests to be formatted in a specific
way so the framework can identify and execute them.

• Shell – UNIX [9] shell scripting may be used to create testing scripts that use the
available Application Programming Interfaces (APIs) to make integration and
validation tests.

• Jmeter [10] is a 100% pure Java and has an Ubuntu installer in order to be used by
command line to perform the tests or via GUI. It may be used to test performance
both on static and dynamic resources. It can be used to simulate a heavy load on a
server, group of servers, network or object to test its strength or to analyse overall
performance under deferent load types.

• Apache HTTP server benchmarking tool [11] is a load testing and benchmarking tool
for Hypertext Transfer Protocol (HTTP) server. It can be run from command line and
it is very simple to use. A quick load testing output can be obtained in just one minute.
As it does not need too much familiarity with load and performance testing concepts,
it is suitable for beginners and intermediate users. To use this tool, no complex setup
is required. Moreover, it can either be installed automatically with Apache web
server, or it can be installed separately as Apache utility

The above list contains a small part of the available solutions for code test and automation.
Furthermore, many programming languages and frameworks have developed their own
testing libraries which in many cases are very flexible and easy to use. So, in TeNDER we let

D5.4 – First version of TeNDER Platform

P a g e 24 | 99

free the developers to decide which tool they want to use based on the technology that they
choose and the testing requirements of their implementations.

3.2 Integration tests

The integration phase is composed by a set of tests with the main goal of testing the
interaction between the different components of the TeNDER paltform. For this purpose, a
series of tests was created starting with the deployment of all the containers in the stage
server. At the end of the deployment phase the CI/CD pipeline triggers the integration tests
that are hosted in different repository [12] through a specific API call to the TeNDER GitLab.
Each integration test is implemented as a bash script and is executed by the appropriate CI/CD
pipeline. Currently the integration tests perform end-to-end testing between the following
components:

• Message broker (RabbitMQ)

• Message consumers

• Remote Document Database

• Authorization and Authentication server

• TeNDER EHR (HAPI FHIR server)

There are three ways of executing the integration tests:

• Triggered by schedule: Every night at 3 - 4 am all tests are executed periodically
(Figure 11).

Figure 11 Periodic integration tests

• Triggered by other Pipeline: There is the possibility to trigger a pipeline from another
one. So, after the build, deploy, test jobs of the deployment pipeline we trigger the
specific integration test. (See subsection 2.1.1.4)

• Triggered manually: An integration test can be triggered manually from the web
interface of the TeNDER GitLab.

At this point the end-to-end testing involves the all the active components of the TeNDER
platform. However, as the development of new components and their integration with the
TeNDER platform proceeds, these tests are going to enhanced with new ones in the future.
Currently, one of the typical integration tests which is executed each (sequentially) or after
each day code push consiting of the following phases (Figure 12):

• Phase 1: Token Request from authorization and authentication server.

D5.4 – First version of TeNDER Platform

P a g e 25 | 99

• Phase 2: Registration of new Users and Devices. At this point, we create new Users
(ex Doctor and Patient) and we create new devices (ex sleep-tracker, smart-band,
kinect etc) correlated with the specific patient for test purposes.

• Phase 3: Publish simulated data to the message broker (RabbitMQ).

• Phase 4: Retrieve data from Remote Document Database using the appropriated
HTTP API.

• Phase 5: Retrieve data from TeNDER EHR (HAPI FHIR) using the appropriated HTTP
API.

• Phase 6: Clean the environment.

Figure 12 Integration test execution

3.3 Qualification test

The qualification phase aims to evaluate the performance of the platform. During this testing
phase, we perform tests related to the functionalities, performance, security, and
conformance with the requirements. Following the same approach with the integration tests,
a specific repository was created to facilitate the qualification tests based on the CI/CD tools.
Temporally, the stage environment is used, but as the development process of the platform
proceeds the creation of a new environment dedicated to the qualification testing will be
considered. This is necessary because many tests execute stress actions to measure the
performance of the platform and identify potential “breakpoints” of the services etc. This kind
of actions cannot be performed either in production or in the stage environments. At this
point, we have developed qualification tests for the South Bound Interface (SBI) of the
TeNDER platform consisting of an AMQP/SSL interface for collecting data from pilot site
implementation. The qualification test uses the perf-test library provided from the RabbitMQ
[13] which performs throughput tests on specific queues. This tool is capable to create a
number of publishers/consumers, but in this case, we use only publishers as we want to
measure also the performance of the TeNDER platform on consuming data. Note that this

Phase 1

Phase 2

Phase 3

Phases 4 - 5

Phase 6

D5.4 – First version of TeNDER Platform

P a g e 26 | 99

tool can achieve high rates for publishing (up to 80 to 90K messages per second and
connection). Next, we present results from three different test scenarios.

Scenario 1
This test publishes 1000 messages in total with concurrency level of 100 messages. As we see
from the output of the test we sent all the messages in 19 secs with average publishing rate
of 99msg/sec. However, the TeNDER platform required ~20 secs to consume and process the
incoming messages (Figure 13).

Command:

Output:

Figure 13 TeNDER platform consuming rate (Scenario 1)

Scenario 2
In the second scenario, 10000 messages in total are published with concurrency level of 1000
messages. As we see from the output of the test the test tool managed to send all the
messages in 17 secs with average publishing rate of 989msg/sec. However, in this case the

./stress-test-nbi.sh -q "sum-rehab" -r 100 -c 1000 -u 127.0.0.1 -m "re-hub.json"

queue: sum-rehab
rate: 100
tolal number of messages: 1000
uri: 127.0.0.1
msg file: re-hub.json
id: test-143715-071, starting producer #0
id: test-143715-071, starting producer #0, channel #0
id: test-143715-071, time: 1.005s, sent: 91 msg/s
id: test-143715-071, time: 2.005s, sent: 100 msg/s
id: test-143715-071, time: 3.005s, sent: 100 msg/s
id: test-143715-071, time: 4.006s, sent: 99 msg/s
id: test-143715-071, time: 5.016s, sent: 100 msg/s
id: test-143715-071, time: 6.025s, sent: 100 msg/s
id: test-143715-071, time: 7.025s, sent: 100 msg/s
id: test-143715-071, time: 8.025s, sent: 100 msg/s
id: test-143715-071, time: 9.025s, sent: 100 msg/s
id: test-143715-071, time: 10.026s, sent: 99 msg/s
id: test-143715-071, sending rate avg: 99 msg/s
id: test-143715-071, receiving rate avg: 0 msg/s
Messages publishing took 19 secs

D5.4 – First version of TeNDER Platform

P a g e 27 | 99

TeNDER platform required ~40 secs to consume and process the incoming messages (Figure
14).

Command:

Output:

Figure 14 TeNDER platform consuming rate (Scenario 2)

Scenario 3
In the third scenario, we stressed further the platform increasing the concurrency level to
3000 messages. In this case the test tool managed to send all the messages in 10 secs with
average publishing rate of 2901 msg/sec. However, the TeNDER platform required ~40 secs
to consume and process the incoming messages (Figure 15).

Command:

./stress-test-nbi.sh -q "sum-rehab" -r 1000 -c 10000 -u 127.0.0.1 -m "re-
hub.json"

queue: sum-rehab
rate: 1000
tolal number of messages: 10000
uri: 127.0.0.1
msg file: re-hub.json
id: test-145004-901, starting producer #0
id: test-145004-901, starting producer #0, channel #0
id: test-145004-901, time: 1.000s, sent: 901 msg/s
id: test-145004-901, time: 2.000s, sent: 1000 msg/s
id: test-145004-901, time: 3.001s, sent: 999 msg/s
id: test-145004-901, time: 4.001s, sent: 1001 msg/s
id: test-145004-901, time: 5.001s, sent: 1000 msg/s
id: test-145004-901, time: 6.001s, sent: 1000 msg/s
id: test-145004-901, time: 7.001s, sent: 1000 msg/s
id: test-145004-901, time: 8.001s, sent: 1000 msg/s
id: test-145004-901, time: 9.001s, sent: 1000 msg/s
id: test-145004-901, time: 10.001s, sent: 1000 msg/s
id: test-145004-901, sending rate avg: 989 msg/s
id: test-145004-901, receiving rate avg: 0 msg/s
Messages publishing took 17 secs

./stress-test-nbi.sh -q "sum-rehab" -r 3000 -c 10000 -u 127.0.0.1 -m "re-
hub.json"

D5.4 – First version of TeNDER Platform

P a g e 28 | 99

Output:

Figure 15 TeNDER platform consuming rate (Scenario 3)

The results from the qualification test provided some very useful conclusions regarding the
performance of the first version of the TeNDER platform. First, the adoption of a
publish/subscribe message broker as SBI of the TeNDER platform provided high incoming
throughput more than 3000 msg/sec which overcomes the current requirements from the
first wave of pilots in TeNDER. However, the platform consumes and processes the incoming
messages in average 340 mgs/sec (green line of Figure 15). This performance is acceptable
for the first wave of pilots but it could be improved in the future versions.
More qualification tests regarding the North Bound Interface (NBI) are under development
and they will be presented in the D5.5.

queue: sum-rehab
rate: 3000
tolal number of messages: 10000
uri: 127.0.0.1
msg file: re-hub.json
id: test-150258-827, starting producer #0
id: test-150258-827, starting producer #0, channel #0
id: test-150258-827, time: 1.000s, sent: 2695 msg/s
id: test-150258-827, time: 2.001s, sent: 2997 msg/s
id: test-150258-827, time: 3.001s, sent: 3003 msg/s
id: test-150258-827, sending rate avg: 2901 msg/s
id: test-150258-827, receiving rate avg: 0 msg/s
Messages publishing took 10 secs

D5.4 – First version of TeNDER Platform

P a g e 29 | 99

4 MONITORING RESOURCES

TeNDER platform implements an open, service-oriented architecture which aims to cover all
the operational aspects from actual realization, test, trials and support the pilots in the WP6.
To achieve this goal, it is necessary to provide the appropriate tools in order to guarantee (a)
the integration of the services developed in WP3 and WP4 and (b) the appropriate resources
allocation for service deployment in the deferent environment (i.e. stage, production etc).
Therefore, in TeNDER we designed and deployed a state-of-the-art monitoring and analysis
framework based on open-source tools for collecting performance metrics from every
deployment site. This monitoring system is installed in a separate VM (Table 4) running on
MAG’s cloud infrastructure and collects data from the HLS services and the LLS services
running on pilot sites. Additionally, to guarantee the resource allocation TeNDER's
monitoring system collects information related to the available resources of the servers in
stage and production environments.
Under this perspective, it is of paramount importance to collect monitoring data from as
many possible sources. In the implemented system, there are four different types of sources
for collecting data:

1) Containers (i.e. services running as docker containers)
2) VMs (i.e. service running on VMs or VMs hosting stage/production environments)
3) Physical servers (i.e. physical machines hosting TeNDER services)
4) Network traffic (i.e. network traffic on physical and virtual level)

Apart from the collection and the process of monitoring data related to the performance of
the TeNDER’s services and infrastructure, the monitoring framework will accommodate
specific alerting rules for real-time notification events. In this respect, the monitoring
framework will offer the capability to developers to define service-specific metrics and rules,
whose violation will generate alerts.

Table 4 Monitoring server flavor

Server flavor

vCPUs 4

RAM memory 8GB

IP address 185.146.161.250

Storage 120GB

#NICs 2

OS Centos 7

Software Docker/Docker Compose

Figure 16 Monitoring tools

Monitoring system architecture
TeNDER’s monitoring solution complies with the scalability requirement of the services-

oriented architecture of the TeNDER platform because the selected tools are Cloud Native

(CN) implementations, and the proposed design can easily integrate new types of monitoring

targets without the need for difficult configurations or down-time. So, in case that we need

to scale up the production environment by adding a new server, the only necessary action is

D5.4 – First version of TeNDER Platform

P a g e 30 | 99

to update the configuration file of the Prometheus monitoring server4. Moreover, for large

scale deployments Prometheus Monitoring servers supports a distributed (cascaded)

architecture. The local Prometheus servers collect and store metric data from the services

deployed in the LLS/HLS, while only the alerts are sent to the federated Prometheus server

for further processing and forwarding to the appropriate users. Another scalability

requirement concerns the large flow of data from the monitoring agents to the monitoring

server and its respective database that might affect the service performance in extreme

cases. To overcome these potential problems the monitoring system (a) is configured to store

monitoring data of a specific period and (b) in cases of large deployment is able adopt the

cascade architecture mentioned above. At the current development status of the TeNDER

platform the monitoring system can be accommodated a by a single server deployment. The

detail architecture is shown in the Figure 17.

Figure 17 Monitoring framework architecture

The architecture of the monitoring system consists of the following components:

Monitoring tools:

• Prometheus server [14] stands as the central point of event monitoring, storage and

alerting. All performance metrics are collected, using a HTTP pull model, and stored

in a timeseries database. Some of the key features that make this server suitable for

the proposed architecture are: (a) use of a flexible query language (PromQL), which

makes easier the interconnection with external systems (b) existence of many

opensource implementations (exporters) for exposing monitoring metrics from

various applications, to create new ones (c) autonomy as there is no reliance on

complex distributed storage mechanisms and (d) new monitoring targets can be

4 Prometheus Server Reference: Available at https://prometheus.io/docs/introduction/overview/

https://prometheus.io/docs/introduction/overview/

D5.4 – First version of TeNDER Platform

P a g e 31 | 99

easily added via reconfiguration or by using the file-based service discovery

mechanisms.

Figure 18 Prometheus chart

• The Prometheus Pushgateway [15] allows batch jobs, running on LLS in pilot sites, to

expose their metrics to Prometheus. Since this kind of jobs may not exist long enough

to be scraped, they can instead push their metrics to a Pushgateway. The

Pushgateway then exposes these metrics to Prometheus server (Figure 19).

Figure 19 Performance metrics from LLS

D5.4 – First version of TeNDER Platform

P a g e 32 | 99

• Alertmanager [16] handles alerts sent by client applications such as Prometheus

server. It takes care of deduplicating, grouping, and routing them to the correct

receiver integrations such as email, PagerDuty, or OpsGenie. It also takes care of

silencing and inhibition of alerts.

Figure 20 Prometheus Alertmanager

• Grafana [17] is an open-source solution for running data analytics, pulling up metrics

that make sense of the massive amount of data and it provides interactive

visualization web dashboards (Figure 21).

Figure 21 TeNDER dashboards on Grafana

D5.4 – First version of TeNDER Platform

P a g e 33 | 99

Monitoring Agents:

• Netdata.io [18] is a powerful real-time monitoring agent which collects thousands of

metrics from systems, hardware, virtual machines, and applications with zero

configuration. It runs permanently on the physical/virtual servers, containers, cloud

deployments, and edge/IoT devices, and is perfectly safe to install on your systems

mid-incident without any preparation (Figure 22).

Figure 22 Netdata web GUI

• cAdvisor [19] provides metrics of the resource usage and performance characteristics

of the running containers. It is a running daemon that collects, aggregates, processes,

and exports information about running containers. Specifically, for each container it

keeps resource isolation parameters, historical resource usage, histograms of

complete historical resource usage and network statistics (Figure 23).

D5.4 – First version of TeNDER Platform

P a g e 34 | 99

Figure 23 List of running containers in cAdvisor GUI

4.1 Stage and Production environments

The monitoring information from the stage and the production environments is collected by

the Netdata monitoring agent, then the Prometheus server scrapes the arriving messages

periodically and stores the information collected to its local time-series database. Next, a

Grafana dashboard has been configured which uses Prometheus server as data source and

visualizes the data via interactive charts. In this way the administrator of the infrastructure

can select the environment of his choice and see in one dashboard all the critical performance

metrics and the current resource utilization (Figure 24 and Figure 25).

D5.4 – First version of TeNDER Platform

P a g e 35 | 99

Figure 24 Recourse allocation in the production environment

Figure 25 Recourse allocation in the stage environment

D5.4 – First version of TeNDER Platform

P a g e 36 | 99

4.2 TeNDER HLS services

In TeNDER platform all the services of the HLS are hosted on docker containers. Therefore, it

is crucial not only to monitor the resource allocation on stage or production level but also to

investigate how the available resources are distributed to each one of the running containers.

For this reason, we adopted the cAdvisor monitoring agent which provides detailed

information about the status of the running containers. Following the same approach,

Prometheus pulls periodically data from cAdvisor agents running on stage and production

environments, and stores them in its local timeseries database. Next, a specific interactive

dashboard has been developed to visualize the resource utilization per container (Figure 26).

Figure 26 Recourse allocation per running container

4.3 TeNDER LLS services

TeNDER LLS is mainly composed of several components for gathering and processing

information from heterogeneous sensing devices (i.e. Depth Sensors, wearables, sleep

trackers, position trackers etc.). These components implement several functionalities

including data storage, processing, synchronization, anonymization as well as event detection

and activity recognition. Next, the events are sent to HLS to support useful functionalities for

the TeNDER stakeholders. The first version of the TeNDER platform consists of the following

components:

• HeTRA Server

D5.4 – First version of TeNDER Platform

P a g e 37 | 99

• HeTRA Client

• Abnormal detection Module

• Local document database (MongoDB)

The LLS components are installed in physical machines on each pilot site (i.e. homes,

rehabilitation rooms, hospitals, etc.). In some cases, the components are executed for a

specific period under the supervision of a health professional (ex. during a set of exercises in

a rehabilitation room), but in some other cases the LLS run in unattended mode as daemon

services. For example, in the home installations, a hard requirement is to monitor the

performance status of the LLS services in an automated manner and generate the appropriate

notification in case of service or network failure. For this reason, during the LLS installation

process, a health-check bash script is installed which runs periodically and checks the

operational status of the LLS components and reports the status to the Prometheus

Pushgateway server (Figure 27). The report data do not contain any personal information (i.e.

user name, IP address etc) but only the installation id and the current status of each

component.

Command:

Report Script (pushmetric.ps1):

Figure 27 Metrics from SPOMINCICA installation site

Powershell.exe
-executionpolicy bypass
-File c:\tender\tnd-install\pushmetric.ps1
-Job %siteID% -Instance %copmID%
-Metric %METRIC%
-Value 0

param(
 [parameter(Mandatory=$false)]
 [string]$Job,
 [string]$Instance,
 [string]$Metric,
 [string]$Value
)
$mt = "$Metric $Value`n "Invoke-WebRequest
-Uri http://185.146.161.250:32657/metrics/job/$Job/instance/$Instance
-UseBasicParsing
-Method POST -Body $mt > $null

D5.4 – First version of TeNDER Platform

P a g e 38 | 99

4.4 Alerting

One of the most useful features of the TeNDER monitoring system is the alerting mechanism,

which offers near real-time notifications to the service developers and the administrators of

the infrastructure. Alerting in the Prometheus context is separated into two parts. The first

one has to do with the definition of the alerting rules in the Prometheus server (Figure 28),

and the second one is the actual management of the alert events which it takes place in the

Alertmanager. The Alertmanager receives the alert events from one or many Prometheus

servers and then performs management actions including silencing, inhibition, aggregation

and sending out notifications via methods such as email, on-call notification systems, and chat

platforms as shown in figures 28-35.

Figure 28 Rules status in Prometheus server

The main steps to setting up alerting and notifications are:

• Setup and configure the Alertmanager

• Configure Prometheus to talk to the Alertmanager

• Create alerting rules in Prometheus

Currently, the alerting rules have been organized in two groups, one related to the status of

the servers and another on the running containers.

Some of the already applied rules are the following:

D5.4 – First version of TeNDER Platform

P a g e 39 | 99

Servers:

1. CPU utilazation

Description: Server CPU utilazation over 70% for more than 1 minute.

Figure 29 Server CPU utilization rule

2. Memory utilazation

Description: Server memory utilazation over 70% for more than 1 minute.

Figure 30 Server memory utilization rule

3. Storage utilazation

Description: Server storage utilazation over 80% .

Figure 31 Server storage utilization 80%

Description: Filesystem is predicted to run out of space within the next 6 hours at

current write rate.

Figure 32 Filesystem run-out prediction rule

Containers:

D5.4 – First version of TeNDER Platform

P a g e 40 | 99

1. CPU utilazation

Description: Container CPU usage over 50% for more than 2 minutes.

Figure 33 Container CPU usage rule

2. Memory utilazation

Description: Container memory usage over 1.5GB for more than 2 minutes.

Figure 34 Container memory usage rule

3. Storage utilazation

Description: Container disk usage over 2GB for more than 2 minutes.

Figure 35 Container disk usage rule

D5.4 – First version of TeNDER Platform

P a g e 41 | 99

5 TeNDER PLATFORM

5.1 Low Level Subsystem

The low-level subsystem (LLS) is mainly composed of several sensing modules that gather

information from the patients. Several subsystems are interoperating at diverse locations (in

each of the TeNDER countries) to collect information from several devices (including depth

sensors, wearables, sleep trackers among others). These modules are divided into several

categories that safely store the information, as described in Figure 36, where the data are

processed, synchronized, and a set of separated solutions to transform the data collected into

the useful functionalities for the TeNDER stakeholders. This module, formally known as

Activity Recognition, is responsible of orchestrating the events detector (i.e. fall down,

festination, etc.).

Figure 36 TeNDER Low Level Subsystem

HeTra subsystem is the core subsystem of the LLS. It enables tracking patient and offers to

the high-level subsystem’s modules the functionality to track specific health characteristics,

from direct health situation information to periodical test results and feedback from

professionals. Moreover, this subsystem gives the opportunity to the users to choose which

health characteristics to track and, also, provides an efficient feedback mechanism that, along

with user activity recognition and, through multimodal fusion, allows for the extraction of

valuable conclusions regarding the patient’s health status.

HeTra is responsible for the data acquisition from the sensors as well as HeTra delivers the

acquired data to the Abnormal Behaviour Detector (ABD) subsystem that is part of TeNDER

LLS and to the Multimodal Fusion (MMF) subsystem which is part of the HLS.

HeTra does not only deliver the raw data as acquired from the sensors but it also provides

techniques in order to extract features that will be useful for subsequent analysis. This

analysis is performed in SENSELib. This library includes sensor data acquisition tools as well

as specific algorithms for data processing (tracking, skeleton smoothing, dimensionality

reduction etc.).

D5.4 – First version of TeNDER Platform

P a g e 42 | 99

Figure 37 SenseLib schematic description

A client of HeTra runs on the other subsystems of TeNDER (ABD and MMF subsystems)

through which the communication with HeTra will take place.

SENSELib is a part of the TeNDER’s open API system and is used to develop HeTra subsystem.

This library provides mainly two types of functionalities, i.e., acquisition and processing

(Figure 37) based on the following modules:

• Multi-Sensorial Capturing module

• Digital Interaction Module

• Abnormal Behaviour Detection module

• Affective Computing module

• Localization tracking module

• Kinect Azure tracking module

5.1.1 HeTRA server and client (CERTH)

Description

From a front-end perspective, the HeTra tool is comprised of two separate applications the

HeTra client and the HeTra server, each of them having its own GUI. Using these GUIs, the

user may check the connectivity with the sensors, select the type of data to be acquired (e.g.

in the case of the Kinect v02 and the Azure Kinect sensor RGB, Depth and IR frames could be

captured). In addition, HeTra enables the acquired raw data from the sensors to be stored

locally in a Mongo database instance. For example, by clicking on the button “Connect and

D5.4 – First version of TeNDER Platform

P a g e 43 | 99

check Devices” HeTra server looks for a response from the selected devices. Then, once

response is taken, the user can click on the “Begin Acquisition” button to start acquiring data

from the sensors. Additionally, the user may click on the “Save to DB” button to save sensors’

raw data to the MongoDB. Furthermore, in the cases in which data acquisition is deployed via

secure API calls (Localization, Sleep Sensor, Wristband sensors), using the HeTra Server GUI,

the user may fill in the specific URLs which contain the sensor IDs from which he/she needs

to acquire data from.

Figure 38 HeTra Client GUI.

D5.4 – First version of TeNDER Platform

P a g e 44 | 99

Figure 39 HeTra Server GUI.

From a back-end perspective, the HeTra tool provides the ability to collect data from cameras

(Kinectv02, Azure Kinect), collect raw data from sensors (Localization, Sleep Sensor,

Wristband) via secure API calls and additionally gather data from microphones (Voice

Tracker). All these collections can be orchestrated and synchronized through HeTra and may

be further exploited from the other modules of the TeNDER ecosystem maintaining the

privacy of the users.

Software Dependencies

• Windows 10 (64 bit)

Pro, Enterprise, Education (Build 17134 or higher), Home (version 1903 or higher)

• Python 3.7.3

• Kinect Runtime 2.0

• PyAudio-0.2.11

Build – Deployment

Tests

Table 5 Senselib test

Test name Senselib

Test Purpose Check the methods responsible for acquiring data from different
sensors as well as methods for processing the acquired data.

Pre-test conditions Run the test in the solution in Visual Studio 2019

msbuild HeTraClient.sln
msbuild HeTraServer.sln

D5.4 – First version of TeNDER Platform

P a g e 45 | 99

Test Tool VSTest.Console.exe (Visual Studio 2019)

Test description Check Senselib project.

Test Verdict The library of Senselib is functional

Command:

Table 6 Client test

Test name ΗeTraClient

Test Purpose Check the visualization and communication between of the sensors
data with the main server.

Pre-test conditions Run the test in the solution in Visual Studio 2019

Test Tool VSTest.Console.exe (Visual Studio 2019)

Test description Check HeTra_Client project.

Test Verdict HetraClient.exe is functional

Command:

Table 7 Server test

Test name HeTra Server

Test Purpose Check the collection of the data and the performing tasks of
consultation to other instances/apps to ingest the data into the
TeNDER local storage.

Pre-test conditions Run the test in the solution in Visual Studio 2019

Test Tool VSTest.Console.exe (Visual Studio 2019)

Test description Check HeTra_Server project.

Test Verdict HetraServer.exe is functional

Command:

We can conduct all the tests from the Visual Studio IDE during the development process. In

the following figures, the execution and the test results are depicted.

vstest.console.exe Test_Sencelib.dll

vstest.console.exe Test_Client.dll

vstest.console.exe Test_Server.dll

D5.4 – First version of TeNDER Platform

P a g e 46 | 99

Figure 40 Unit Tests execution

Figure 41 Unit Test execution results

5.1.2 Abnormal detection Module (UPM)

Description

This module comprises all the functionalities of interest for the patients, family, caregivers
and health professionals for the care delivery. The module is mainly composed of two types
of functionalities: The “real time events” and the “non-real time events”. The former group
contains those events that require immediate attention including high Heart Rate, the fall
down, patient leaving the house among other events. The latter group contains the non-real
time events that will be reported in periodic messages.

D5.4 – First version of TeNDER Platform

P a g e 47 | 99

Figure 42 Abnormal detection module

In order to boost the modularity of the system, the CI/CD approach was adopted in TeNDER.
It implies the separation into containers. These containers will oversee the implementation
of functionalities associated to a particular sensor as described in Figure 42. Therefore, there
is a main “orchestrator container” which extracts the information from the local mongo
database. This library enables the access to the data. A set of functionalities containerised
including:

− The depth sensor container. Implemented in Python 2.7, using Keras framework and
the Microsoft CNTK Deep Learning library. This container is connected to the mongo
via pymongo library and the central node.

− The abd_band container. Implemented in Python 3.6, includes the functionalities for
the Fitbit-band, the microphone, the sleep sensor among others. It relies on
Tensorflow 2.0.

Software Dependences
• Docker (ver. 19.03.8)

• docker-compose (ver. 1.26.2)

Build – Deployment

Build the container images:

Instantiate the service:

Tests

The components and the provided endpoints are tested after the deployment phase.

docker build -f tnd-ab-dtc -t tenderdev/abd_band:latest .
docker build -f tnd-ab-dtc2 -t tenderdev/abd_kinect:latest .

docker-compose up -d

D5.4 – First version of TeNDER Platform

P a g e 48 | 99

Table 8 Mongo connectivity test.

Test name ABD test

Test Purpose Check ABD accesses to database and RabittMQ queues

Pre-test conditions Docker installed

Test Tool pyTest library

Test description 1. Receive a 200 code from database query
2. Post successfully test message into RabittMQ

Test Verdict ABD is correctly connected and running

Command:

Output:

5.2 High Level Subsystem

5.2.1 Proxy and Authorization server (MAG)

Description

TeNDER secured gateway provides secure access and SSO service to all users and systems to

TeNDER ecosystem. Currently, the implementation of the TeNDER gateway consists of a

reverse proxy (Traefik [20]) and an authentication/authorization server (Keycloack [21]). The

proxy server implements load balancing and handles the HTTPs certificates and the

authorization server guarantees that each user will have access only in the service and data

that are related to his account and role. Furthermore, this approach can be easily integrated

with several infrastructure components i.e. Docker, Swarm Kubernetes, etc.

docker exec -t tnd-mongo-rest_mongo_api_1 sh -c "pytest tests”

======================= test session starts ====================================
platform linux -- Python 3.7.3, pytest-5.4.3, py-1.9.0, pluggy-0.13.1
cachedir: tests
rootdir: tests
collected 2 items

test_mongo.py [100%]
test_broker.py [100%]

======================= 2 passed in 0.2s ======================================

D5.4 – First version of TeNDER Platform

P a g e 49 | 99

Figure 43 TeNDER secure proxy server

Software Dependences

• Docker (ver. 19.03.8)

• docker-compose (ver. 1.26.2)

• Postgres DB (ver. 11.2)

• Existence of two docker networks (idm_net, data_net)

Build – Deployment

Build the container images:

Instantiate the service:

Access endpoints:

The administrator of the platform can use the GUI (Figure 44) interface of Keycloak server in

order change the current configuration either by modifying the pre-loaded realms or by

creating new ones. The GUI is available on the following endpoint:

docker build -f auth-server/Dockerfile -t tender-auth-server .

apk add --no-cache --upgrade bash
./create_networks.sh
docker-compose -f auth-server/docker-compose.yaml up -d

https://auth-stage-tender.maggiolicloud.it/auth/

D5.4 – First version of TeNDER Platform

P a g e 50 | 99

Figure 44 Clients on TeNDER realm.

Also, the proxy server offers web GUI (Figure 45) which provides the operational status of the

server regarding the active backends/frontend endpoints and the health status of the

microservices that are exposed to the public network. These dashboards are available on the

following endpoints:

Figure 45 Traefik health dashboard

http://stage-tender.maggiolicloud.it:8081/dashboard/

D5.4 – First version of TeNDER Platform

P a g e 51 | 99

Figure 46 Traefik backend services

CI/CD Pipeline

image:
 name: docker/compose:latest
 entrypoint: ["/bin/sh", "-c"]
variables:
 GIT_STRATEGY: clone
 WORK_DIR: ${CI_PROJECT_NAME}
 BRANCH: ${CI_COMMIT_REF_NAME}
 REGISTRY: tender-registry:5000
 SHARED_PATH: /builds/$CI_PROJECT_PATH
stages:
 - build
 - deploy
 - tests
 - create_p_images
 - list_services
build_images:
 stage: build
 script:
 - docker build -f auth-server/Dockerfile -t tender-auth-server .
 - docker tag tender-auth-server $REGISTRY/tender-auth-server:sta
 - docker push $REGISTRY/tender-auth-server:sta
 tags:
 - stage

D5.4 – First version of TeNDER Platform

P a g e 52 | 99

deploy_sec_gw:
 stage: deploy
 script:
 - apk add --no-cache --upgrade bash
 - ./create_networks.sh
 - docker-compose -f auth-server/docker-compose.yaml down
 - docker-compose -f auth-server/docker-compose.yaml up -d
 tags:
 - stage
tests:
 stage: unit_tests
 script:
 - tests/test-containers-status.sh
 - tests/test-realm.sh
 - tests/test-endpoints.sh
 tags:
 - stage
create_prod_images:
 stage: create_p_images
 script:
 - docker tag $REGISTRY/tender-auth-server:sta $REGISTRY/tender-auth-
server:prod
 - docker push $REGISTRY/tender-auth-server:prod
 when: manual
 tags:
 - stage
list_apps:
 stage: list_services
 script:
 - docker network ls
 - docker-compose -f auth-server/docker-compose.yaml ps
 tags:
 - stage

Tests

The provided APIs by the servers and their configuration are tested after the deployment

phase.

Table 9 Test containers status

Test name Application server connectivity

Test Purpose Check the operational status of the containers consisting of the
proxy and authorization service.

Pre-test conditions The proxy and authorization service running on stage environment

Test Tool Bash Automated Testing System (BATS)

Test description 1. Retrieve operational status of keyckoak, keycloak db and
traefik containers.

2. Check if all containers are in running state

Test Verdict Service has been deployed successfully

Command:

cd ./tests
./test-containers-status.sh

D5.4 – First version of TeNDER Platform

P a g e 53 | 99

Output:

Table 10 Test Keycloak configuration

Test name Application server connectivity

Test Purpose Check in the TeNDER realm has been loaded in keycloak server.

Pre-test conditions The proxy and authorization service running on stage environment

Test Tool Bash Automated Testing System (BATS)

Test description 1. Retrieve operational relams from keyckoak api
2. Check if TeNDER realm is configured

Test Verdict Keycloak has ben configured correctly

Command:

Output:

Table 11 Test Proxy and Authorization servers endpoints

Test name Application server connectivity

Test Purpose Check the endpoints of keycloak and traefik servers

Pre-test conditions The proxy and authorization service running on stage environment

Test Tool Bash Automated Testing System (BATS)

Test description 1. Perform http GET request to the https://auth-stage-
tender.maggiolicloud.it/auth/

2. Check HTTP response code (200)
3. Perform http GET request to the http://stage-

tender.maggiolicloud.it:8081/dashboard/
4. Check HTTP response code (200)

Test Verdict HTTP endpoints are available

Command:

✓ check keycloak container

✓ check keycloak database container

✓ check traefik container

3 tests, 0 failures

cd ./tests
./ test-realm.sh

✓ check TeNDER Realm

1 test, 0 failures

cd ./tests
./test-endpoints.sh

D5.4 – First version of TeNDER Platform

P a g e 54 | 99

Output:

5.2.2 Message broker and Consumer

Description

The collected data from the sensors are processed and then sent to the HAPI FHIR server,

where a specific data structure and fields are needed to correctly store the information on it.

To communicate with the HAPI FHIR server, there is an internal API which provides the

necessary endpoints to efficiently read and write data. In order to optimize the workflow from

the sensor’s data collection to the HAPI FHIR server, a message broker was added and

configured through the usage of rabbitMQ. By having a message broker, all the collected data,

are handled, and published to specific topics where, depending on the rules implemented,

hold them in queues that are consumed by authorized receivers (credentials are needed to

have permission to get the messages).

As a receiver, there is a consumer, developed in Java, which is responsible for receiving the

messages, serializing them into FHIR HL7 patterns and storing them in the server. Specific

queues were created to help identify different messages which need specific serialization.

Important to mention that this implementation is fully integrated with the central

Authorization and Authentication server of the platform.

Software Dependences

Message broker:

• RabbitMQ 3.7.4

Consumer:

• Maven 3.6.3

• Java JDK 11

Build – Deployment

Message broker:

Build the container images:

Instantiate the service:

Management access endpoint (Accessible from internal network only):

✓ check keycloak endpoint

✓ check traefik endpoint

2 tests, 0 failures

docker build --no-cache=true -t tnd-broker .

docker run -d -p 8585:15671 -p 41757:5672 -p 51757:5671 -p 9419:9419 --name tnd-
broker -h tender-rmq $REGISTRY/tnd-broker:sta

D5.4 – First version of TeNDER Platform

P a g e 55 | 99

Consumer:

Build the container images:

Instantiate the service:

CI/CD Pipeline

Message broker:

image: docker
variables:
 WORK_DIR: ${CI_PROJECT_NAME}
 BRANCH: ${CI_COMMIT_REF_NAME}
 REGISTRY: tender-registry:5000
before_script:
 - docker info
stages:
 - build
 - test
 - deploy
 - list_services
 - create_p_images
build_project:
 stage: build
 script:
 - docker build --no-cache=true -t tnd-broker .
 - docker tag tnd-broker $REGISTRY/tnd-broker:sta
 - docker push $REGISTRY/tnd-broker:sta
 tags:
 - stage
deploy_project:
 stage: deploy
 script:
 - docker ps -a -q --filter "name=tnd-broker" | grep -q . && docker stop
tnd-broker && docker rm -fv tnd-broker
 - docker run -d -p 8585:15671 -p 41757:5672 -p 51757:5671 -p 9419:9419 --
name tnd-broker -h tender-rmq $REGISTRY/tnd-broker:sta
 - sleep 10
 tags:
 - stage
list_apps:
 stage: list_services
 script:
 - docker logs tnd-broker
 - docker logs tnd-dt-consumer
 tags:
 - stage
tests:

 stage: test
 script:

 - tests/message_execution_status.sh

 - tests/int-test-fir.sh

 tags:

 - stage
create_prod_images:

http://stage-tender.maggiolicloud.it:8585/

docker build -t $REGISTRY/tender-consumer-ubw:prod -f dockerfile/prod/Dockerfile
. --build-arg TZ=UTC

docker-compose -f workers/docker-compose.yml up -d

D5.4 – First version of TeNDER Platform

P a g e 56 | 99

 stage: create_p_images
 script:
 - docker tag $REGISTRY/tnd-broker:sta $REGISTRY/tnd-broker:prod
 - docker push $REGISTRY/tnd-broker:prod
 when: manual
 tags:
 - stage

Consumer:

image:
 name: docker/compose:1.21.2
 entrypoint: ["/bin/sh", "-c"]
variables:
 GIT_STRATEGY: clone
 REGISTRY: tender-registry:5000
stages:
 - build
 - deploy
 - test
 - list_services
 - create_p_images
build_images:
 only:
 refs:
 - master
 variables:
 - $TENDER
 stage: build
 script:
 - echo "Build consumer image"
 - docker build --no-cache -t tender-consumer-ubw -f
dockerfile/stage/Dockerfile . --build-arg TZ=UTC
 - docker tag tender-consumer-ubw $REGISTRY/tender-consumer-ubw:sta
 - docker push $REGISTRY/tender-consumer-ubw:sta
 tags:
 - stage
deploy_workers:
 only:
 refs:
 - master
 variables:
 - $TENDER
 stage: deploy
 script:
 - echo "Remove consumer container"
 - docker stop consumer-rabbit || true
 - docker rm consumer-rabbit || true
 - echo "Recreate container"
 - docker-compose -f docker-compose-stage.yml up -d --force-recreate
 tags:
 - stage
list_apps:
 only:
 refs:
 - master
 variables:
 - $TENDER
 stage: list_services
 script:
 - docker logs tender-consumer-ubw
 - docker ps
 tags:
 - stage

D5.4 – First version of TeNDER Platform

P a g e 57 | 99

tests:

 stage: test

 script:

 - tests/consumer_execution_status.sh

 - tests/int-test-fir.sh

 tags:
 - stage

create_prod_images:
 only:
 refs:
 - master
 variables:
 - $TENDER
 stage: create_p_images
 script:
 - echo "Remove old consumer prod image"
 - docker rmi $REGISTRY/tender-consumer-ubw:prod || true
 - echo "Remove old scheduler prod image MISSING"
 - echo "Build and push new consumer prod image"
 - docker build -t $REGISTRY/tender-consumer-ubw:prod -f
dockerfile/prod/Dockerfile . --build-arg TZ=UTC
 - docker push $REGISTRY/tender-consumer-ubw:prod
 when: manual
 tags:
 - stage

Tests

Both components are tested together to test the workflow from the publish to the receive

and data handling.

Table 13 - Test Message Broker and Consumer’s Execution and Workflow

Test name Application server connectivity

Test Purpose Check the execution of the rabbitMQ instance and if its topics and
queues are correctly created. If so, verify if it's ready to store all the
data published and, when a request to receive the data is made, the
information is pop to the consumer that will handle the information
and store it in the HAPI FHIR server.

Pre-test conditions The rabbitMQ running in a local or cloud environment. Deploy
consumer in a local or cloud environment. Have HAPI FHIR server
working in a local or cloud environment.

Test Tool Shell Script (sh)

Test description 1. In case of TeNDER staging environment, perform a curl
command to the IP and Port where the message broker is
instantiated;

2. Publish data to the message broker;
3. Check if information was stored in HAPI FHIR server.

Test Verdict Message broker and consumer are running and working properly

Command:
bash tests/consumer_execution_status.sh

Output:

D5.4 – First version of TeNDER Platform

P a g e 58 | 99

HTTP/1.1 200 OK
content-length: 1391
content-type: text/html
date: Thu, 05 Aug 2021 18:59:30 GMT
etag: "804493663"
last-modified: Wed, 02 Jun 2021 10:21:22 GMT
server: Cowboy

Command:
bash int-test-fir.sh

Output:

Figure 42 - Publish/Receive and HAPI FHIR’s data storage check.

5.2.3 Electronic Health Record server

Description

For the electronic health record, an instance of the HAPI FHIR server was integrated. It

provides a full implementation of the HL7 FHIR standard for healthcare interoperability,

designed to facilitate the flexible integration of FHIR resources in applications/systems,

allowing different clients to connect.

Regarding server interaction, the FHIR standard implementation provides an HTTP API to

enable CRUD operations (create, delete, read and update) on the database, supporting

different deployment schemes and relational databases.

D5.4 – First version of TeNDER Platform

P a g e 59 | 99

For the TeNDER project, the server was deployed with the standard tools, having a

PostgreSQL instance integrated as an open-source object-relational database system and an

API interaction using the structure already defined for each resource [22].

Concerning authentication, a new layer was implemented in the server to verify the request's

authenticity. Since the service that manages the authentication is Keycloak, which is used on

every TeNDER component that needs authorization management, a token must be used to

validate them. The token is generated in the login phase through Keycloak's API and returned

to the final user who will use it in every request made to the HAPI FHIR as an Authorization

token.

Software Dependencies

• Maven 3.6.3

• Java JDK 11

• Tomcat 9

• Java JRE 11

Build – Deployment

Build the container images

docker build -t $REGISTRY/hapi-fhir-jpaserver:prod -f dockerfile/prod/Dockerfile

Instantiate the service

docker-compose -f hapi-fhir/docker-compose.yml up -d

Access endpoint

https://hapi-prod-tender.maggiolicloud.it/hapi-fhir-jpaserver/fhir/<resource>

CI/CD Pipeline

image:
 name: docker/compose:1.21.2
 entrypoint: ["/bin/sh", "-c"]
variables:
 GIT_STRATEGY: clone
 WORK_DIR: ${CI_PROJECT_NAME}
 BRANCH: ${CI_COMMIT_REF_NAME}
 REGISTRY: tender-registry:5000
 SHARED_PATH: /builds/$CI_PROJECT_PATH
stages:
 - build
 - deploy
 - list_services
 - int-test
 - create_p_images
build_images:
 only:
 refs:
 - master

https://hapi-prod-tender.maggiolicloud.it/hapi-fhir-jpaserver/fhir/%3cresource

D5.4 – First version of TeNDER Platform

P a g e 60 | 99

 stage: build
 script:
 - docker build -t hapi-fhir-jpaserver -f dockerfile/stage/Dockerfile .
 - docker tag hapi-fhir-jpaserver $REGISTRY/hapi-fhir-jpaserver:sta
 - docker push $REGISTRY/hapi-fhir-jpaserver:sta
 tags:
 - stage
deploy_hapi_fhir:
 only:
 refs:
 - master
 stage: deploy
 script:
 - docker-compose -f docker-compose-stage.yml up -d --build hapi-fhir-
jpaserver-start
 tags:
 - stage
list_apps:
 only:
 refs:
 - master
 stage: list_services
 script:
 - docker-compose logs
 - docker-compose ps
 tags:
 - stage
run_test:
 stage: int-test
 script:
 - apk update
 - apk add curl
 - curl -s -X POST -F token=0f2c5b4019231cd48f49fe229746f2 -F ref=master -
F "variables[TEST_SCRIPT]=int-test-hfir.sh"
https://tendergitlab.maggiolicloud.it/api/v4/projects/32/trigger/pipeline
 tags:
 - stage
create_prod_images:
 only:
 refs:
 - master
 stage: create_p_images
 script:
 - docker rmi $REGISTRY/hapi-fhir-jpaserver:prod || true
 - docker build -t $REGISTRY/hapi-fhir-jpaserver:prod -f
dockerfile/prod/Dockerfile .
 - docker push $REGISTRY/hapi-fhir-jpaserver:prod
 when: manual
 tags:
 - stage

Tests

The HAPI FHIR already provides internal tests in every package used every time the image is

built. It assures the correct integration of the packages with valid versions and allows the

inclusion of custom tests.

For the TeNDER case, were added interceptors and filters to increase the necessary logic into

specific requests before their processing and guarantee the correct workflow.

https://tendergitlab.maggiolicloud.it/api/v4/projects/32/trigger/pipeline

D5.4 – First version of TeNDER Platform

P a g e 61 | 99

Table 13 - HAPI FHIR HTTP API connectivity test

Test name Test snapshots versions and usability

Test Purpose Each HAPI FHIR’s package should be tested
to always have the correct versions and to
avoid package bugs in deployment phase

Pre-test conditions A local or cloud environment with mvn

(Maven) installed

Test Tool Maven

Test description 1. Go to each HAPI FHIR’s package

2. Run internal tests

3. Wait until all tests passed

Test Verdict All external packages are updated and
working properly

Command:

mvn -P ALLMODULES,NOPARALLEL clean install

Output:

D5.4 – First version of TeNDER Platform

P a g e 62 | 99

Figure 40 TeNDER’s EHR unit tests

Table 14 HAPI FHIR Interceptors Tests

Test name Test snapshots versions and usability

Test Purpose Some requests made to HAPI FHIR are
intercepted to add more logic and combine
information with other microservices

Pre-test conditions A local or cloud environment with HAPI FHIR

running

Test Tool Shell Script (sh)

D5.4 – First version of TeNDER Platform

P a g e 63 | 99

Test description 1. Simulate calls with interceptors

2. Assert positive responses

3. Wait until all tests passed

Test Verdict All interceptors are working properly

Command:
bash int-test.sh

Output:

Figure 41 HAPI FHIR Interceptors Tests.

5.2.4 Remote Document DB

Description

One of the databases which consists of the TeNDER platform is a document-based mongo DB.

In this DB anonymized data coming from the LLS, through the message broker, are stored to

be further analysed by TeNDER services. To enhance the secure interconnection between the

DB and the rest of the services regardless the programming language and the technology

which are used from the rest services an HTTP REST API has been developed. This API can be

accessed directly from the internal services of the platform via an internal private network.

In case which TeNDER platform is deployed in different servers the same API is provided over

HTTPS and it is fully integrated with central Authorization and Authentication server of the

platform.

Software Dependences

• django 3.0.4

• mongoengine 0.19.1

• django-rest-framework-mongoengine 3.4.1

• pymongo 3.10.1

D5.4 – First version of TeNDER Platform

P a g e 64 | 99

Build – Deployment

Build the container images:

Instantiate the service:

Access endpoint:

CI/CD Pipeline

image:
 name: docker/compose:latest
 entrypoint: ["/bin/sh", "-c"]
variables:
 GIT_STRATEGY: clone
 WORK_DIR: ${CI_PROJECT_NAME}
 BRANCH: ${CI_COMMIT_REF_NAME}
 REGISTRY: tender-registry:5000
 SHARED_PATH: /builds/$CI_PROJECT_PATH
before_script:
 - docker --version
 - docker-compose --version
stages:
 - build
 - deploy
 - unt-test
 - int-test
 - create_p_images
build_images:
 stage: build
 script:
 - docker build -f mongo_rest/Dockerfile -t tender-mongo_api .
 - docker build -f nginx/Dockerfile -t tender-mongo_api_fsrv .
 - docker build -f nginx/Dockerfile-gk -t tender-gtkeeper-mongo-api .
 - docker tag tender-mongo_api $REGISTRY/tender-mongo_api:sta
 - docker tag tender-mongo_api_fsrv $REGISTRY/tender-mongo_api_fsrv:sta
 - docker tag tender-gtkeeper-mongo-api $REGISTRY/tender-gtkeeper-mongo-
api:sta
 - docker push $REGISTRY/tender-mongo_api:sta
 - docker push $REGISTRY/tender-mongo_api_fsrv:sta
 - docker push $REGISTRY/tender-gtkeeper-mongo-api:sta
 tags:
 - stage
deploy_mongo_api:
 stage: deploy
 script:
 - docker-compose down
 - docker-compose up -d
 tags:
 - stage
unit_tests:
 stage: unt-test
 script:
 - docker exec -t tnd-mongo-rest_mongo_api_1 sh -c "python3 manage.py test
api.tests.DBConTestCase"
 - docker exec -t tnd-mongo-rest_mongo_api_1 sh -c "python3 manage.py test
api.tests.ApisTestCase"

docker build -f mongo_rest/Dockerfile -t tender-mongo_api .
docker build -f nginx/Dockerfile -t tender-mongo_api_fsrv .

docker-compose up -d

https://api-db-stage-tender.maggiolicloud.it/api/v1/docs/

D5.4 – First version of TeNDER Platform

P a g e 65 | 99

 tags:
 - stage
run_test:
 stage: int-test
 script:
 - apk add curl
 - curl -s -X POST -F token=0f2c5b4019231cd48f49fe229746f2 -F ref=master -
F "variables[TEST_SCRIPT]=int-test.sh"
https://tendergitlab.maggiolicloud.it/api/v4/projects/32/trigger/pipeline
 tags:
 - stage
create_prod_images:
 stage: create_p_images
 script:
 - docker tag $REGISTRY/tender-mongo_api:sta $REGISTRY/tender-mongo_api:prod
 - docker tag $REGISTRY/tender-mongo_api_fsrv:sta $REGISTRY/tender-
mongo_api_fsrv:prod
 - docker tag $REGISTRY/tender-gtkeeper-mongo-api:sta $REGISTRY/tender-
gtkeeper-mongo-api:prod
 - docker push $REGISTRY/tender-mongo_api:prod
 - docker push $REGISTRY/tender-mongo_api_fsrv:prod
 - docker push $REGISTRY/tender-gtkeeper-mongo-api:prod
 when: manual
 tags:
 - stage

Tests

All the components and their endpoints are tested during the deployment phase in the stage

environment.

Table 12 Mongo HTTP API connectivity test.

Test name Application server connectivity

Test Purpose Check connectivity between application server and MongoDB

Pre-test conditions The MongoDB REST service running on stage environment

Test Tool django.test

Test description 3. Create a new record via HTTP POST
4. Retrieve the data based on patient ID
5. Check if the posted and retrieved data are equal

Test Verdict Application server has access to Mongo

Command:

Output:

Table 13 Mongo HTTP API Rehabilitation test.

Test name Rehabilitation service API

Test Purpose Check the API for Rehabilitation data

docker exec -t tnd-mongo-rest_mongo_api_1 sh -c "python3 manage.py test
api.tests.DBConTestCase”

System check identified no issues (0 silenced)...........
--
Ran 1 test in 0.012s
OK

D5.4 – First version of TeNDER Platform

P a g e 66 | 99

Pre-test conditions The MongoDB REST service running on stage environment

Test Tool django.test

Test description 1. Retrieve data from
/api/v1/summarization/rehabilitation/

2. Check HTTP status code (200 OK)

Test Verdict API is functional

Table 14 Mongo HTTP API smart band test.

Test name Smart-band service API

Test Purpose Check the API for smart-band data

Pre-test conditions The MongoDB REST service running on stage environment

Test Tool django.test

Test description 1. Retrieve data from
/api/v1/summarization/ band/

2. Check HTTP status code (200 OK)

Test Verdict API is functional

Table 15 Mongo HTTP API ABD test.

Test name Abnormal detection service (ABD)

Test Purpose Check the API for ADB data

Pre-test conditions The MongoDB REST service running on stage environment

Test Tool django.test

Test description 1. Retrieve data from
/api/v1/summarization/adb/

2. Check HTTP status code (200 OK)

Test Verdict API is functional

Command:

Output:

5.2.5 Web GUI (UBI)

Description

The TeNDER project, besides the mobile application developed for patients and caregivers,

had to provide an efficient and interactive way for administrators and health professionals to

interact with the system. Since these users will mostly manage resources, the solution was

the development of a web application. Each user has his private area and access only to the

information that his role allows.

docker exec -t tnd-mongo-rest_mongo_api_1 sh -c "python3 manage.py test
api.tests.ApisTestCase"

System check identified no issues (0 silenced)...........
--
Ran 10 tests in 0.036s
OK

D5.4 – First version of TeNDER Platform

P a g e 67 | 99

Until now, there are two developed interfaces: the administrator and health professional

interface. The administrator interface is structured to provide the needed functionalities for

the correct management of its organization, users, and devices. Each administrator is related

to an organization, and all the users and devices created are managed by him. Besides

creating users and devices, the administrator can: edit, delete, and change their status (active

or deactivate); create relations between users; filter and visualize quantitative information;

check the devices usage timespan and other helpful measures.

Regarding the health professional interface, its focus is on the user patients. Each health

professional has his patients and can be accessed individually in the web application. The

details page of each patient provides an organized custom dashboard, where the user can

monitor and follow the patient’s collected information from its general information to sleep

tracker, localization tracker, and many others.

Software Dependences

• Docker

• NodeJS

• Browser with Javascript support

• Npm or Yarn

Build – Deployment

Build the container images:
docker build --no-cache -t $REGISTRY/tender-web-app-ubw:prod -f
deployment/dockerfile/production/Dockerfile . --build-arg TZ=UTC

Instantiate the service:
docker-compose -f webapp/docker-compose.yml up -d

Access endpoint:
https://prod-tender.maggiolicloud.it/

CI/CD Pipeline

image:
 name: docker/compose:1.21.2
 entrypoint: ["/bin/sh", "-c"]

variables:
 GIT_STRATEGY: clone
 WORK_DIR: ${CI_PROJECT_NAME}
 BRANCH: ${CI_COMMIT_REF_NAME}
 REGISTRY: tender-registry:5000
 SHARED_PATH: /builds/$CI_PROJECT_PATH

before_script:
 - echo ${CI_PROJECT_PATH}
 - echo ${SHARED_PATH}

https://prod-tender.maggiolicloud.it/

D5.4 – First version of TeNDER Platform

P a g e 68 | 99

 - touch ${SHARED_PATH}/test_file
 - pwd
 - ls -ll
 - docker --version
 - docker-compose --version

stages:
 - build
 - deploy
 - list_services
 - create_p_images
 - promote

build_image:
 only:
 refs:
 - staging
 stage: build
 script:
 - docker --version
 - docker info
 - docker rmi web-app || true
 - docker rmi $REGISTRY/tender-web-app-ubw:sta || true
 - echo "Build web app image"
 - docker build --no-cache -t web-app -f
deployment/dockerfile/staging/Dockerfile . --build-arg TZ=UTC
 - docker tag web-app $REGISTRY/tender-web-app-ubw:sta
 - docker push $REGISTRY/tender-web-app-ubw:sta
 tags:
 - stage

deploy_web:
 only:
 refs:
 - staging
 stage: deploy
 script:
 - echo "Remove web app container"
 - docker stop web_app || true
 - docker rm web_app || true
 - echo "Recreate container"
 - docker-compose -f deployment/docker-compose-stage.yml up -d --force-
recreate
 tags:
 - stage

list_apps:
 only:
 refs:
 - staging
 stage: list_services
 script:
 - docker logs web_app
 - docker ps
 tags:
 - stage

create_prod_images:
 only:
 refs:
 - staging
 stage: create_p_images
 script:
 - docker rmi $REGISTRY/tender-web-app-ubw:prod || true

D5.4 – First version of TeNDER Platform

P a g e 69 | 99

 - docker build --no-cache -t $REGISTRY/tender-web-app-ubw:prod -f
deployment/dockerfile/production/Dockerfile . --build-arg TZ=UTC
 - docker push $REGISTRY/tender-web-app-ubw:prod
 when: manual
 tags:
 - stage

promote to staging:
 stage: promote
 when: on_success
 only:
 - master
 before_script:
 - apk --no-cache add git
 - export GIT_AUTHOR_NAME="Ubiwhere Release Tools"
 - export GIT_AUTHOR_EMAIL="ci@ubiwhere.com"
 - mkdir /root/.ssh/ && echo "${SSH_PRIVATE_KEY}" > /root/.ssh/id_rsa
 - git config --global http.sslverify "false"

 - git remote add maggioli "Error! Hyperlink reference not valid.}"
 script:
 - git config user.name "Ubiwhere Release Tools"
 - git config user.email "ci@ubiwhere.com"
 - git pull maggioli staging
 - git push maggioli HEAD:staging

Tests

At this stage, the tests implemented are only for auxiliary / utility functions. The main reasons

are:

• A lot of these functions depend on frameworks or data that can change between

browsers and locales, and since the Jest [23] testing environment is locale- and

browser-agnostic, it can pick up on issues that can often go undetected;

• In future stages, a lot of the frontend structure might change radically, so it was

decided to not implement unit tests for screens and components.

To run the tests, a Powershell or Git Bash terminal with Node.js and npm installed is needed,

then from project’s folder execute the following:

Command:

Output:

npm run test

mailto:GIT_AUTHOR_EMAIL=
mailto:ci@ubiwhere.com

D5.4 – First version of TeNDER Platform

P a g e 70 | 99

Figure 42 – Web UI tests

For better tests comprehension, the following tables will give an overview and explanation

of each test.

Table 16 Utils Component for Custom Calendar Day

Target getDotColor() function

Purpose Checks if correct colors are returned for the

Reminder calendar dots that appear on the

days.

Table 17 Utils Component for Custom List Item

Target parseName() function

Purpose Checks if the function accurately converts a

name in string format to JSON object with

“family” and “given” fields

D5.4 – First version of TeNDER Platform

P a g e 71 | 99

Table 18 Utils Component for Custom Calendar Day

Target getPatientName() function

Purpose Checks if the function accurately fetches a

patient’s name given a reference string and

patient list, and returns a string of the full

name of the patient concatenated with

their username

Table 19 Utils for Admin’s Container

Target checkLocationValidation() function

Purpose Checks if the function accurately returns

the correct values when supplied with a

Kinect device form and a patient list that

may or may not be empty

Table 20 Utils for Language Selector’s Container

Target getFlagEmoji() function

Purpose Checks if the function accurately returns

the correct country emoji for each of the

available language locales, or no emoji if no

available or valid locale is provided.

Table 21 Utils for Localization’s Container

Target getPatientLocations() function

Purpose Checks if the function accurately returns an

array of strings of each of the Environment

present in a given user’s data

Target formatHourLabel() function

Purpose Checks if the function returns a human-

readable hour string (“HH:MM”) when

provided with a calculated hour from

localization data (ex: 1.30 -> 01:30)

Target secondsToHours() function

Purpose Checks if the function correctly converts a

number of seconds into a number of hours

(ex: 3600 -> 1.00)

D5.4 – First version of TeNDER Platform

P a g e 72 | 99

Target secondsToMinutes() function

Purpose Checks if the function correctly converts a

number of seconds into a number of

minutes (ex: 300 -> 5.00)

Target secondsToHoursMinutes() function

Purpose Checks if the function correctly converts a

number of seconds into a formatted hour /

minute string (ex: 3600 -> “1h00m”)

Target getBackgroundColor() function

Purpose Checks if the function accurately returns

the intended color for each of the locations

bars to be displayed on the graph

Table 22 Utils for Patient Info’s Container

Target convertRoleToTranslation() function

Purpose Checks if the function accurately converts a

provided string to a Snake Case equivalent

used for i18n translation keys (ex: “Formal

Caregiver” -> “formal_caregiver”

Table 23 Utils for Safety and Wellbeing’s Container

Target getEmotionIcon() function

Purpose Checks if the function accurately returns

the Happy icon component or Sad icon

component (used in the Emotional State

information component) depending on the

provided emotion string

Target getEmotionHighlightColor() function

Purpose Checks if the function accurately returns

the correct color depending on the

provided emotion string (used for color-

coding Emotional State info)

Target calculateEmotionalState() function

Purpose Checks if the function accurately converts a

list of Emotional State values into a JSON

object containing the number of “happy”

D5.4 – First version of TeNDER Platform

P a g e 73 | 99

instances, “sad” instances, and the total

number of values

Table 24 Utils for Sleep Diary’s Container

Target formatHourLabel() function

Purpose Checks if the function returns a human-

readable hour string when provided with a

calculated hour from localization data (see

Containers/Localization/Utils)

Target secondsToHours() function

Purpose Checks if the function correctly converts a

number of seconds into a number of hours

(see Containers/Localization/Utils)

Target secondsToMinutes() function

Purpose Checks if the function correctly converts a

number of seconds into a number of

minutes (see Containers/Localization/Utils)

Target secondsToHoursMinutes() function

Purpose Checks if the function correctly converts a

number of seconds into a formatted hour /

minute string (see

Containers/Localization/Utils)

Table 25 Utils for List Devices Admin’s Scenes

Target generateInterval() function

Purpose Checks if the function correctly converts

two ISO format dates into a JSON object

detailing the interval between them in

days, minutes or hours

Table 26 Utils for Patient List Doctor’s Scenes

Target sortByName() function

Purpose Checks if the function correctly returns 1 or

-1 depending on alphabetical sorting of 2

provided patient names (this function is

D5.4 – First version of TeNDER Platform

P a g e 74 | 99

used as a comparator for an Array.sort()

call)

Target filterByName() function

Purpose Checks if the function correctly returns true

or false depending on the correspondence

between a provided search string and a

provided patient (this function is used as a

comparator for an Array.filter() call)

Table 27 Utils for Home’s Scenes

Target sortByName() function

Purpose Checks if the function correctly returns 1 or

-1 depending on alphabetical sorting of 2

provided user names (see

Scenes/Doctor/PatientsList/Utils)

Target filterByName() function

Purpose Checks if the function correctly returns true

or false depending on the correspondence

between a provided search string and a

provided user (see

Scenes/Doctor/PatientsList/Utils)

Table 28 Utils for Root

Target parseName() function

Purpose Checks if the function accurately converts a

name in string format to JSON object with

“family” and “given” fields (see

Components/CustomListItem/Utils)

5.2.6 Smart Band Server (UPM)

Description

For the gathering and processing of accelerometer and heartrate encrypted raw data it was

needed a common server where all the wristbands of the project send this type of data to be

filtered and retrieved from other modules to be used for other purposes.

From this server there are available calls to collect decrypted individual packages (last or

current) or whole day data.

D5.4 – First version of TeNDER Platform

P a g e 75 | 99

In order to save the data, it is used a MongoDB and the API calls are supported from a Flask

module under Python 3.6

Software Dependences

• Docker

• Docker-compose

• MongoDB

Build – Deployment

 Build and push the container images:

 Deploy the service:

Access endpoints

Stage env:

Production env:

CI/CD Pipeline

image:
 name: docker/compose:latest
 entrypoint: ["/bin/sh", "-c"]

variables:
 WORK_DIR: ${CI_PROJECT_NAME}
 BRANCH: ${CI_COMMIT_REF_NAME}
 REGISTRY: tender-registry:5000
 SHARED_PATH: /builds/$CI_PROJECT_PATH

before_script:
 - docker --version
 - docker-compose --version

stages:
 - build
 - test
 - deploy
 - list_services
 - create_p_images

docker build -t tender_device_api .
docker tag tender_device_api $REGISTRY/tender_device_api:sta
docker push $REGISTRY/tender_device_api:sta

docker-compose down
docker-compose up -d

https://fitbit-stage-tender.maggiolicloud.it/

https://fitbit-prod-tender.maggiolicloud.it/

D5.4 – First version of TeNDER Platform

P a g e 76 | 99

build_project:
 stage: build
 script:
 - docker build -t tender_device_api .
 - docker tag tender_device_api $REGISTRY/tender_device_api:sta
 - docker push $REGISTRY/tender_device_api:sta
 tags:
 - stage

deploy_project:
 stage: deploy
 script:
 - docker-compose down
 - docker-compose up -d
 tags:
 - stage

list_apps:
 stage: list_services
 script:
 - docker-compose logs
 - docker-compose ps
 tags:
 - stage

tests:
 stage: test
 script:
 - tests/test-endpoint.sh
 - tests/test-mongo-cnt-status.sh
 tags:
 - stage

create_prod_images:
 stage: create_p_images
 script:
 - docker tag $REGISTRY/tender_device_api:sta
$REGISTRY/tender_device_api:prod
 - docker push $REGISTRY/tender_device_api:prod
 when: manual
 tags:
 - stage

Tests

All the components and the provided endpoints are tested during the deployment phase.

Test backend API:

Table 29 Smart Band backend test

Test name Smart Band Backend

Test Purpose Check the API for smart-band data

Pre-test conditions Backend API running

Test Tool Bash Automated Testing System (BATS)

Test description 1. Retrieve data from
https://fitbit-stage-tender.maggiolicloud.it/status

2. Check HTTP status code (200 OK)

Test Verdict API is functional

D5.4 – First version of TeNDER Platform

P a g e 77 | 99

Command:

Output:

Test MongoDB:

Table 30 Database test

Test name Smart Band Backend

Test Purpose Check MongoDB availability

Pre-test conditions MongoDB running

Test Tool Bash Automated Testing System (BATS)

Test description 1. Retrieve operational status of mongoDB container.
2. Check if the container is in running state.

Test Verdict API is functional

Command:

Output:

5.2.7 Recommender System

Description

Recommender System module supports the patients profile generation and throw

recommendations based in profile and sensors events.

It consists in a flask module that makes queries to EHR to retrieve useful information related

with possible recommendations and after a processing and clustering process, results are also

posted into EHR to be consumed by mobile and web user interfaces.

Into this service also are included a pseudo-anonymization process to, through a web

interface, transform any word of any language of the included in the project into an

anonymized code that can be safely stored into the database without compromise personal

information. In the same way, this tool also provides the meaning of a given code previously

anonymized.

cd ./tests
./test-endpoint.sh

✓ check fitbit-server endpoint

1 tests, 0 failures

cd ./tests
./test-mongo-cnt-status.sh

✓ check MongoDB container

1 tests, 0 failures

D5.4 – First version of TeNDER Platform

P a g e 78 | 99

In addition, the tokens of Fitbit users are stored in this service into a database in order to use

these tokens to call Fitbit API to get wristbands information.

All these functionalities are performed using a flask module and a PostgreSQL database under

Python 3.6

Software Dependences

• Docker

• Docker-compose

• PostgreSQL

Build – Deployment

Build and push docker container images
docker build -t tender_device_api .
docker tag tender_device_api $REGISTRY/tender_device_api:sta
docker push $REGISTRY/tender_device_api:sta

Instantiate service
docker-compose down
docker-compose up -d

Access endpoints

Stage env:
https://recommender-stage-tender.maggiolicloud.it/

Production env:
https://recommender-prod-tender.maggiolicloud.it/

CI/CD Pipeline

image:
 name: docker/compose:latest
 entrypoint: ["/bin/sh","-c"]

variables:
 WORK_DIR: ${CI_PROJECT_NAME}
 BRANCH: ${CI_COMMIT_REF_NAME}
 REGISTRY: tender-registry:5000
 SHARED_PATH: /builds/$CI_PROJECT_PATH

before_script:
 - docker --version
 - docker-compose --version

stages:
 - build
 - test
 - deploy
 - list_services
 - create_p_images

build_project:
 stage: build

D5.4 – First version of TeNDER Platform

P a g e 79 | 99

 script:
 #- docker rmi tender_recommender_api
 #- docker rmi --force $REGISTRY/tender_recommender_api:sta
 - docker build -t tender_recommender_api .
 - docker tag tender_recommender_api $REGISTRY/tender_recommender_api:sta
 - docker push $REGISTRY/tender_recommender_api:sta
 tags:
 - stage

deploy_project:
 stage: deploy
 script:
 - docker-compose down
 - docker-compose up -d
 tags:
 - stage

list_apps:
 stage: list_services
 script:
 - docker-compose logs
 - docker-compose ps
 tags:
 - stage

tests:

 stage: test

 script:
 - tests/test-recom-endpoint.sh

 - tests/test-postgres.sh

 tags:

 - stage

create_prod_images:
 stage: create_p_images
 script:
 - docker tag $REGISTRY/tender_recommender_api:sta
$REGISTRY/tender_recommender_api:prod
 - docker push $REGISTRY/tender_recommender_api:prod
 when: manual
 tags:
 - stage

Tests

All the components and the provided endpoints are tested during the deployment phase in

the stage environment.

Table 31 Recommender HTTP API test

Test name Recommender Backend

Test Purpose Check the API for smart-band data

Pre-test conditions Backend API running

Test Tool Bash Automated Testing System (BATS)

Test description 1. Retrieve data from  
https://recommender-stage-tender.maggiolicloud.it/status 

2. Check HTTP status code (200 OK) 

Test Verdict API is functional

D5.4 – First version of TeNDER Platform

P a g e 80 | 99

Command:

Output:

Table 32 PostgreSQL DB test

Test name Recommended DB

Test Purpose Check MongoDB availability

Pre-test conditions MongoDB running

Test Tool Bash Automated Testing System (BATS)

Test description 1. Retrieve operational status of PostgreSQL containers.
2. Check if the container is in running state

Test Verdict API is functional

Command:

Output:

5.2.8 Questionary Server

Description

The questionnaire server is a platform that needs to support the creation and filling of

questionnaires and, at the same time, to have a structure capable of storing data publicly and

privately. Since TeNDER will provide its services to several organizations, this server has to

provide a solution where users can be associated with an organization and access

management through roles and privacy measures.

To fill these requirements, it instantiated an open-source Data Management System (DMS)

named CKAN [24].

CKAN is a powerful data management system that makes data accessible by providing tools

to streamline publishing, sharing, finding, and using data.

By making open data websites, CKAN is capable of providing pretty good management and

publishing collections of information. It's used by national and local governments, research

institutions, and other organizations that collect a lot of diverse data, which reinforces its

efficiency and usability.

cd ./tests
./test-recom-endpoint.sh

✓ check Recommender endpoint

1 tests, 0 failures

cd ./tests
./ test-postgres.sh

✓ check postgress container

1 tests, 0 failures

D5.4 – First version of TeNDER Platform

P a g e 81 | 99

It is open-source software with a good number of active contributors, which gives greater

security in terms of support and constant improvement of the platform. Additionally, CKAN

can be changed and extended with the inclusion of one or more CKAN extensions.

Since CKAN does not provide the creation and filling of questionnaires, the best approach was

the creation of an extension to fulfil this purpose. It’s an objective, efficient, and usable CKAN

extension where users can create and fill questionnaires and manage the gathered data.

Joining the CKAN's necessary tools and functionalities for the easy and correct management

of data (open or not) with this extension, the platform will manage a new way of gathering

information. Additionally, the questionnaires' responses will be stored in specific datasets to

posteriorly be sent to the HAPI FHIR server to centralize all data and provide it to the web and

mobile applications.

Software Dependences

• CKAN 2.8 Docker Image (okfn/docker-ckan)

• Docker

• Python 2.7

• Browser with Javascript support

Build – Deployment

Build the container images
docker build --no-cache -t tender-ckan-ubw . --build-arg TZ=UTC

Instantiate the service
docker-compose up -d

Access endpoint
https://qst-prod-tender.maggiolicloud.it/

CI/CD Pipeline

image:
 name: docker/compose:1.21.2
 entrypoint: ["/bin/sh", "-c"]
variables:
 GIT_STRATEGY: clone
 WORK_DIR: ${CI_PROJECT_NAME}
 BRANCH: ${CI_COMMIT_REF_NAME}
 REGISTRY: tender-registry:5000
 SHARED_PATH: /builds/$CI_PROJECT_PATH
stages:
 - build
 - tests
 - deploy
 - list_services
 - create_p_images
build_images:
 stage: build
 script:
 - docker build --no-cache -t tender-ckan-ubw . --build-arg TZ=UTC
 - docker tag tender-ckan-ubw $REGISTRY/tender-ckan-ubw:sta

https://qst-prod-tender.maggiolicloud.it/

D5.4 – First version of TeNDER Platform

P a g e 82 | 99

 - docker push $REGISTRY/tender-ckan-ubw:sta
 tags:
 - stage
deploy_ckan:
 stage: deploy
 script:
 - docker-compose down
 - docker-compose up -d
 tags:
 - stage
list_apps:
 stage: list_services
 script:
 - docker-compose logs
 - docker-compose ps
 tags:
 - stage
tests:

 stage: tests

 script:

 - tests/ckan_execution_status.sh

 - tests/ckan-test.sh
 tags:

 - stage

create_prod_images:
 stage: create_p_images
 script:
 - docker tag $REGISTRY/tender-ckan-ubw:sta $REGISTRY/tender-ckan-ubw:prod
 - docker push $REGISTRY/tender-ckan-ubw:prod
 when: manual
 tags:
 - stage

Tests

Table 33 - Test CKAN Execution.

Test name Application server connectivity

Test Purpose Check the execution of the CKAN instance and if the new extension
were correctly installed.

Pre-test conditions The CKAN running in a local or cloud environment with all the
extensions installed.

Test Tool Shell Script (sh)

Test description 1. In case of CKAN staging environment, perform a curl
command to the IP where the CKAN is instantiated
(curl -I https://qst-stage-tender.maggiolicloud.it)

2. Perform request to CKAN to know which extensions are
installed and running.

Test Verdict CKAN is running and working properly

Command:

bash ckan_execution_status.sh

Output:

HTTP/2 200

D5.4 – First version of TeNDER Platform

P a g e 83 | 99

cache-control: private
content-type: text/html; charset=utf-8
set-cookie:
ckan=b89d69c9399f9bca321208b495d4463e8c02dd2fa827fe076c564e7e923e76c60b11400c;
Path=/
content-length: 12958
date: Thu, 12 Aug 2021 13:36:02 GMT

Table 34 - Test CKAN Questionnaires Extension

Test name Application server connectivity

Test Purpose Check if the questionnaires extension is working properly

Pre-test conditions The CKAN running in a local or cloud environment with all the
extensions installed.

Test Tool Shell Script (sh)

Test description 1. Perform request to create a questionnaire;

2. Perform request to fill a questionnaire;

3. Perform request to get the questionnaire.

Test Verdict CKAN questionnaire extension is working properly

Command:

bash ckan-test.sh

Output:

Figure 47 CKAN test results

5.3 Hybrid Mobile application

Description:

The TeNDER Hybrid Mobile application was designed to help people affected by specific

health and mental diseases. In fact, the UI is simple and intuitive to facilitate the users’

navigation and is compliant with specific accessibility standards. Currently, the application is

organised on four different sections: Services, Home, Messages and Suggestions (Figure

48) and supports three services:

D5.4 – First version of TeNDER Platform

P a g e 84 | 99

• “Health”, collects statistics about patients' health conditions, for instance heart rate

or blood pressure.

• “Reminders” and provides a calendar where the users can manage their activities,

events and appointments.

• “Sleep diary”, which shows statistics and monthly or weekly reports about the

user's sleep quality.

Moreover, the application interfaces were designed to meet the criteria for three end-user

groups:

• Patients;

• Caregivers;

• Professionals

Figure 48 TeNDER's App Sections

Each user can access a profile area where they can modify their information and, in the case

of patients, they can specify their doctor or caregiver, who can monitor the patient using the

same app but a different type of user.

The TeNDER application follows an iterative process to be implemented from the beginning

to the end (more details in D5.1). At a very first stage, the tech team proposed a set of services

and wireframes to explain to the end users’ the main ideas to put into practice and show the

potential of the Tender App. Later on, the collection of user requirements was split into two

phases: Pre-pilot requirements gathering and post-pilot requirements gathering: the

first aimed to obtain the first impressions and ideas of the end-users without having a

prototype. The second is focused on the analysis of feedback provided by end-users after the

first pilot execution. Those phases are covered and well explained in paragraph 2 of

the Deliverable D5.1 Report on TeNDER interfaces.

D5.4 – First version of TeNDER Platform

P a g e 85 | 99

Software Dependences

Technologies involved in the Tender App development are:

• Google’s Firebase

• Ionic 6 (Typescript and HTML/CSS UI side)

• Android OS 8+

• iOS (in progress)

Installation

The TeNDER mobile application currently supports Android OS 8+ (later on for iOS), and is

available in following link:

https://drive.google.com/drive/folders/12UbYnozsMDChx3AvkeN8QD3GJEUToFp5

Tests

Given the ever-increasing complexity of the TeNDER app, manual and automated tests were

designed to manage quality control, tests were split into manual and automatic tests.

The manual testing by technical involves verification on features like resolution of the display

(the quality density or color brightness of the display components), space disposition and

frame/bottoms adaptability and layout structure in different devices. Moreover, the

functionalities and UI features were tested by end users, before and during the pilot

execution.

Automated testing focuses on verifying the correct application functionality, because every

time a piece of source code is modified, the overall application needs to be tested again. With

manual testing, it is not feasible to test the application in a holistic way. The first step to start

automating the process of testing was to describe what the system does: From the

identification of functions that software is expected to perform, a creation of input data and

output based on the specification, the actual test case execution and comparison of actual

and expected outputs.

TeNDER application is the result of a cooperative work where many functionalities are

provided mostly via API, each partner is responsible for making sure their modules or services

are functioning correctly (correct output, reasonable response times, etc). Thus, developers

involved in the implementation of the UI perform a simple verification during the back-end

and front-end integration.

https://drive.google.com/drive/folders/12UbYnozsMDChx3AvkeN8QD3GJEUToFp5

D5.4 – First version of TeNDER Platform

P a g e 86 | 99

Figure 49 An example of API response form console

Figure 50 An example of API response form Console

The “Reminder” functionality does not refer to an external module or API so for that

implementation unit test has been performed. The following images show their results.

D5.4 – First version of TeNDER Platform

P a g e 87 | 99

Figure 51 Unit test to check a new reminder creation

Figure 52 Unit test to check an updated of an event in the Reminder section

Figure 53 Unit test to check vocal reminder

D5.4 – First version of TeNDER Platform

P a g e 88 | 99

Figure 54 Unit test to check speak phrase event

Figure 55 Unit test to check reminder deletion

6 APPLICATION PRΟGRAMABLE INTERFACES

TeNDER platform provides APIs for interconnection with external EHR systems and the

communication between the internal services of the ecosystem. The APIs that are accessible

via the public network are integrated with the authorization and authentication server and

support secure connection over HTTPS protocol. On the other hand, the internal APIs are

accessible only via the private internal network in TeNDER cloud infrastructure, but they can

be offered to outside services if needed in the future, following the same approach. At this

point of the development, the APIs that are public are the ones from the HAPI-FHIR server

and the internal ones are (a) the Remote DB, (b) the Smart Band and c.

To enhance the interconnection with the external EHR systems and the internal services the

consortium decided to create a special documentation server that provides the appropriate

documentation for all the available RESTful APIs of the platform. The TenDER's

documentation is available on the URL:

https://docs-stage-tender.maggiolicloud.it/
and it supports the following specifications:

• OpenAPI [25] is an API description format for REST APIs. An OpenAPI file describes

the entire API, including: (a) the available endpoints (/users) and operations on each

endpoint (GET /users, POST /users); (b) operation parameters Input and output for

D5.4 – First version of TeNDER Platform

P a g e 89 | 99

each operation; (c) authentication methods; (d) contact information; (e) license,

terms of use etc.

The API specifications can be written in YAML or JSON. The format is easy to learn

and readable to both humans and machines.

• Swagger is a set of open-source tools built around the OpenAPI Specification and it

can be used for design, build, document, and consume REST APIs. The major Swagger

tools include: (a) swagger Editor [26], which is a browser-based editor where you can

write OpenAPI specs; (b) swagger UI [27], which renders OpenAPI specs as interactive

API documentation and (c) swagger Codegen [28], which generates server stubs and

client libraries from an OpenAPI spec.

Figure 56 TeNDER's documentation server

http://editor.swagger.io/
https://swagger.io/swagger-ui/
https://github.com/swagger-api/swagger-codegen

D5.4 – First version of TeNDER Platform

P a g e 90 | 99

6.1 EHR API (HL7) (UBI)

The HAPI FHIR instance provides a Java API for HL7 FHIR Clients and Servers [29]. This means

that the API follows the structure and rules of HL7 resources, which garantees the correct

requests and workflow between end-users and the platform.

In the following image (Figure 57) the EHR API’s Swagger can be partially visualize, which is

already deployed in

https://docs-stage-tender.maggiolicloud.it/?urls.primaryName=TENDER%20HAPI%20FHIR.

All available requests are listed and ready to be tested, having examples to facilitate the

developer understading.

Figure 57 API documentation of the HAPI FHIR server

At the bottom of the page, the schema of each available resource is exposed. Through Figure

58, is possible to verify the ‘Account’ resource, providing: all its attributes; if they are

mandatory; its type, and overall structure. Once again, this information is crucial for the

efficient and fast development of components that will communicate with the server.

https://docs-stage-tender.maggiolicloud.it/?urls.primaryName=TENDER%20HAPI%20FHIR

D5.4 – First version of TeNDER Platform

P a g e 91 | 99

Figure 58 HAPI FHIR server API schemas

For a better view and understanding of the schemas and their attributes, the following link

(https://www.hl7.org/fhir/resourcelist.html) lists all the resources where each resource can

be accessed, providing a better explanation. The following image (Figure 59) provides an

example of the ‘Patient’ resource’s structure in JSON format.

https://www.hl7.org/fhir/resourcelist.html

D5.4 – First version of TeNDER Platform

P a g e 92 | 99

Figure 59 Patient resource structure
(from: https://www.hl7.org/fhir/patient.html)

Still in this page, the filters, relationships and attribute’s type explanation can be found or

easily redirected to the correct page.

For the TeNDER case, it was used a Postman collection [30] to reinforce and improve the

documentation and facilitate the API testing. The collection contains the main requests with

several examples, grouped by resource. The main purpose to use it was the tool to define

different environments, which helps the developers to switch between environments in

seconds. Important to mention that the collection is in continuous improvement and the new

version are always provided to avoid deprecated requests or examples.

D5.4 – First version of TeNDER Platform

P a g e 93 | 99

Figure 60 Part of Postman collection

6.2 Remote DB Rest APIs

TeNDER Mongo DB API provides the entry point for data coming from devices and sensors to

the TeNDER high-level subsystem. The main purpose of this implementation is to provide a

unified access to remote MongoDB of the TeNDER using HTTP RESTful API. This approach is

very useful because every service can access the database without any specific dependencies

(i.e. software libraries/plugins etc). The API is provided on two endpoints, over authenticated

https for external access and over http for access by TeNDER services from the internal

network.

D5.4 – First version of TeNDER Platform

P a g e 94 | 99

Figure 61 API documentation of the Remote Mongo DB

6.3 Smart Band APIs

Health Wearable REST API manages all the access of data from bands into the project

database with the corresponding needed pre-process, as the encrypting. The main purpose

of this API is to offer a good interface between bands and database and between data and

other modules of the project which need consume this data as well. This API is structured

D5.4 – First version of TeNDER Platform

P a g e 95 | 99

with one POST endpoint to save data and other four GET endpoints to receive this data

considering different filtering approaches.

Figure 62 API documentation of the Smart Band API

D5.4 – First version of TeNDER Platform

P a g e 96 | 99

7 CONCLUSIONS

In this deliverable, we have described the first version of the TeNDER platform as it is used in

the first wave of pilots. The document presents the tools and methodologies used to drive

the software development in a CI/CD approach, in which the TeNDER development cycle is

based. This has been used to facilitate the development efforts in WP3 and WP4, providing

the tools and methodologies to embrace this development philosophy. Moreover, the use of

software management and automated continuous integration tools (i.e. GitLab, pipelines etc)

allowed the developers to integrate the outcome of the work in an agile way, continuously

pushing improvements and integrating them progressively. This approach has allowed us to

avoid the likely risk of needing a complex and long phase of integration at the end of the

development process, too late to ensure the suitable level of software quality. Furthermore,

we designed and deployed an open-source monitoring system to collect information

regarding the resource allocation from all the deployment environments and for all services.

Finally, we listed and detailed the first version of the integration and qualification tests of the

platform, which have been designed and developed to ensure the functionalities expected

for the first version. As the development process continues, new services and applications

will be added, so during the remaining time of the project we will focus on the improvement

of the current integration and qualification testing procedures and on the design of new ones.

The last deliverable of the WP5 (D5.5) will present the final version of the TeNDER platform

with all its components and the tests.

D5.4 – First version of TeNDER Platform

P a g e 97 | 99

REFERENCES

[1] “Cycle Time ” en.wiktionary.org. https://en.wiktionary.org/wiki/cycle_time

(accessed Aug. 23, 2021).

[2] P. Webteam, “Continuous Delivery Vs. Continuous Deployment” puppet.com.

https://tinyurl.com/zsoenks (accessed Aug. 23, 2021).

[3] “Continuous Integration,” martinfowler.com.

https://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuo

usIntegration (accessed Aug. 23, 2021).

[4] “TeNDER GitLab Repository” TeNDER GitLab. http://tendergitlab.maggiolicloud.it/.

(accessed Aug. 23, 2021).

[5] “TeNDER production deployment” TeNDER GitLab.

https://tendergitlab.maggiolicloud.it/panos_k/tnd-production (accessed Aug. 23,

2021).

[6] W. Project, “Watir Project,” watir.com. http://watir.com/.

https://robotframework.org (accessed Aug. 23, 2021).

[7] “Robot Framework,” robotframework.org. https://robotframework.org (accessed

Aug. 23, 2021).

[8] “pytest: helps you write better programs — pytest documentation,” pytest.org.

https://pytest.org/en/latest/ (accessed Aug. 23, 2021).

[9] “Welcome to bats-core’s documentation” bats-core.readthedocs.io. https://bats-

core.readthedocs.io/en/stable/index.html (accessed Aug. 23, 2021).

[10] “Apache JMeter,” Apache.org, 2019. https://jmeter.apache.org/. (accessed Aug. 23,

2021).

[11] “ab - Apache HTTP server benchmarking tool,” Apache.org, 2019.

https://httpd.apache.org/docs/2.4/programs/ab.html. (accessed Aug. 23, 2021).

[12] “TeNDER integration tests” TeNDER GitLab. http://tendergitlab.maggiolicloud.it/

panos_k/tnd-int-tests. (accessed Aug. 23, 2021).

[13] “RabbitMQ PerfTest,” rabbitmq.github.io. https://rabbitmq.github.io/rabbitmq-

perf-test/stable/htmlsingle/ (accessed Aug. 23, 2021).

[14] “GitHub - prometheus/prometheus: The Prometheus monitoring system and time

series database.,” GitHub. https://github.com/prometheus/prometheus (accessed

Aug. 23, 2021).

https://tinyurl.com/zsoenks
https://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuousIntegration
https://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuousIntegration
http://watir.com/
https://robotframework.org/
https://robotframework.org/
https://pytest.org/en/latest/
https://bats-core.readthedocs.io/en/stable/index.html
https://bats-core.readthedocs.io/en/stable/index.html
https://jmeter.apache.org/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://rabbitmq.github.io/rabbitmq-perf-test/stable/htmlsingle/
https://rabbitmq.github.io/rabbitmq-perf-test/stable/htmlsingle/
https://github.com/prometheus/prometheus

D5.4 – First version of TeNDER Platform

P a g e 98 | 99

[15] “GitHub - prometheus/pushgateway: Push acceptor for ephemeral and batch jobs.,”

GitHub. https://github.com/prometheus/pushgateway (accessed Aug. 23, 2021).

[16] “GitHub - prometheus/alertmanager: Prometheus Alertmanager,” GitHub.

https://github.com/prometheus/alertmanager (accessed Aug. 23, 2021).

[17] “GitHub - grafana/grafana,” GitHub”. https://github.com/grafana/grafana.

(accessed Aug. 23, 2021).

[18] “GitHub - netdata/netdata: Real-time performance monitoring” GitHub.

https://github.com/netdata/netdata (accessed Aug. 23, 2021).

[19] “GitHub - google/cadvisor,” GitHub. https://github.com/google/cadvisor (accessed

Aug. 23, 2021).

[20] “Traefik Labs: Makes Networking Boring,” Traefik Labs: Makes Networking Boring.

https://traefik.io/ (accessed Aug. 23, 2021).

[21] “Keycloak,” www.keycloak.org. https://www.keycloak.org/ (accessed Aug. 23,

2021).

[22] “Http - FHIR v4.0.1,” www.hl7.org. https://www.hl7.org/fhir/http.html (accessed

Aug. 23, 2021).

[23] “Jest - Delightful JavaScript Testing,” Jestjs.io, 2017. https://jestjs.io/ (accessed Aug.

23, 2021).

[24] “CKAN - The open source data management system,” ckan.org. https://ckan.org/

(accessed Aug. 23, 2021).

[25] “GitHub - OpenAPI-Specification/3.0.2.md at main · OAI/OpenAPI-Specification,”

GitHub. https://github.com/OAI/OpenAPI-

Specification/blob/master/versions/3.0.2.md (accessed Aug. 23, 2021).

[26] “Swagger Editor,” editor.swagger.io.

http://editor.swagger.io/?_ga=2.93506717.1281844120.1627895131-

200039773.1627656792 (accessed Aug. 23, 2021).

[27] “API Code & Client Generator | Swagger Codegen,” Swagger.io, 2021.

https://swagger.io/swagger-codegen/ (accessed Aug. 23, 2021).

[28] “REST API Documentation Tool | Swagger UI,” Swagger.io, 2021.

https://swagger.io/swagger-ui/ (accessed Aug. 23, 2021).

[29] “GitHub - hapifhir/hapi-fhir: HAPI FHIR - Java API for HL7 FHIR Clients and Servers,”

GitHub. https://github.com/hapifhir/hapi-fhir (accessed Aug. 23, 2021).

https://github.com/prometheus/pushgateway
https://github.com/prometheus/alertmanager
https://github.com/grafana/grafana
https://github.com/netdata/netdata
https://github.com/google/cadvisor
https://traefik.io/
https://www.keycloak.org/
https://www.hl7.org/fhir/http.html
https://jestjs.io/
https://ckan.org/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md
http://editor.swagger.io/?_ga=2.93506717.1281844120.1627895131-200039773.1627656792
http://editor.swagger.io/?_ga=2.93506717.1281844120.1627895131-200039773.1627656792
https://swagger.io/swagger-codegen/
https://swagger.io/swagger-ui/
https://github.com/hapifhir/hapi-fhir

D5.4 – First version of TeNDER Platform

P a g e 99 | 99

[30] Postman, “Postman | The Collaboration Platform for API Development,” Postman,

2021. https://www.postman.com/.

https://www.postman.com/

