Bl Ref. Ares(2021)5376646 - 31/08/2021

* 5
*
* *
*

* ox *

Co-funded by the Horizon 2020
Framework Programme of the European Union

Deliverable 5.4
First Version of TeNDER Platform

Work Package 5: Services Integration and Technical Validation

affecTive basEd iNtegrateD carE for betteR Quality of Life: TeNDER Project

Grant Agreement ID: 875325

Start date: 1 November 2019

End date: 31 October 2022

Funded under programme(s): H2020-SC1-DTH-2018-2020/H2020-SC1-DTH-2019

Topic: SC1-DTH-11-2019 Large Scale pilots of personalised & outcome based integrated care

Funding Scheme: IA - Innovation action

D5.4 - First version of TeNDER Platform

Disclaimer

This document contains material, which is the copyright of certain TeNDER Partners, and may
not be reproduced or copied without permission. The commercial use of any information
contained in this document may require a license from the proprietor of that information.
The reproduction of this document or of parts of it requires an agreement with the proprietor
of that information. The document must be referenced if used in a publication.

The TeNDER consortium consists of the following Partners.

Table 1 - Consortium Partners List

No Name Short name Country
1 UNIVERSIDAD POLITECNICA DE MADRID UPM Spain
2 MAGGIOLI SPA MAG Italy
3 DATAWIZARD SRL DW Italy
4 UBIWHERE LDA UBI Portugal
5 ELGOLINE DOO ELGO Slovenia
6 ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS CERTH Greece
ANAPTYXIS

7 VRIJE UNIVERSITEIT BRUSSEL VUB Belgium
FEDERATION EUROPEENNE DES HOPITAUX ET .

8 HOPE Belgium
DES SOINS DE SANTE

9 SERVICIO MADRILENO DE SALUD SERMAS Spain

10 SCHON KLINIK BAD AIBLING SE & CO KG SKBA Germany

11 UNIVERSITA DEGLI STUDI DI ROMA TOR UNITOV Italy
VERGATA
SLOVENSKO ZDRUZENJE ZA POMOC PRI

12 DEMENCI - SPOMINCICA ALZHEIMER SPO Slovenia
SLOVENUA

13 ASOCIACION PARKINSON MADRID APM Spain

299

D5.4 - First version of TeNDER Platform

Document Information

Project short name and Grant Agreement ID TeNDER (875325)

Work package WP5

Deliverable number D5.4

Deliverable title First version of TeNDER platform
Responsible beneficiary MAG

Involved beneficiaries UPM, DW, UBI, ELG, CERTH
Typel DEM

Dissemination level® PU

Contractual date of delivery 31 August 2021

Last update 31 August 2021

1 R: Document, report; DEM: Demonstrator, pilot, prototype; DEC: Websites, patent fillings, videos,
etc.; OTHER; ETHICS: Ethics requirement; ORDP: Open Research Data Pilot.

2 pU: Public; CO: Confidential, only for members of the consortium (including the Commission
Services).

3199

D5.4 — First version of TeNDER Platform

Document History

Version Date Status | Authors, Reviewers Description
v0.1 16/06/2021 Draft Panos Karkazis Project deliverable
(MAG) template.
v0.2 09/07/2021 Draft | Thanasis Information on 5.1 and
Makropoulos, 5.1.1
Dimitris
Papadopoulos
(CERTH)
V0.3 13/07/2021 Draft Luis Santos (UBI) Part of section 5.2.2 and
5.2.3
V0.4 20/07/2021 Draft Gustavo Hernandez | General review and
(UPM) contributions to 5.1.2
V0.5 22/07/2021 Draft Luis Santos (UBI) Sections 5.2.5 and 5.2.8
without tests
V0.6 | 29/07/2021 Draft Luis Santos (UBI) Adding tests in Section
5.25
V0.7 1/08/2021 Draft Panos Karkazis Add content on
(MAG) monitoring section
V0.8 4/08/2021 Draft Luis Santos (UBI) Adding tests in Section
5.2.3
V0.9 5/08/2021 Draft Luis Santos (UBI) Adding tests in Section
5.2.2
V0.10 6/08/2021 Draft Luis Santos (UBI) HL7 API Description
V0.11 16/08/2021 Draft Panos Karkazis General review
(MAG) contributions
V0.12 25/08/2021 Draft Paride Criscio (DW) Contribution section 5.3
V0.13 26/08/2021 Draft Panos Review, Editing
Karkazis (MAG)
V0.14 30/08/2021 Draft Thanasis Review, Editing
Makropoulos,
Dimitris
Papadopoulos
(CERTH)
V1.0 31/08/2021 Final Gustavo Hernandez Final peer Review

4| 99

D5.4 — First version of TeNDER Platform

Acronyms and Abbreviations

Acronym/Abbreviation

Description

APls Application Programming Interfaces

ATDD Acceptance Dest Driven Development

CD Continuous Delivery

Cl Continuous Integration

DMS Data Management System

EHR Electronic Health Record

FHIR Fast Healthcare Interoperability Resources
GUI Graphical User Interface

HAPI HL7 Application Programming Interface
HL7 Health Level 7

HLS High-level Services

HTTP Hypertext Transfer Protocol

LLS Low Level Subsystem

NBI North Bound Interface

QoS Quality of Service

REST Representational State Transfer

SBI South Bound Interface

TeNDER affecTive basEd iNtegrateD carE for betteR Quality of Life
VM Virtual Machine

5199

D5.4 - First version of TeNDER Platform

Contents

1 INTRODUCTION (MAG)

2 Hosting Infrastructure Components (MAG)

2.1
2.11
2.11.1
2.1.1.2
2.1.1.3
2.1.14
2.1.1.5
2.2

2.3

2.4

Cl/CD workflow

CI/CD Pipelines

Container build

Unit Tests

Service deployment

Integration Tests

Create production images
Development Environment
Stage Environment

Production Environment

3 TESTING AND VALIDATION (MAG)

3.1
3.2
33

Testing tools
Integration tests

Qualification test

4 MONITORING RESOURCES (MAG)

4.1
4.2
4.3
4.4

Stage and Production environments
TeNDER HLS services
TeNDER LLS services

Alerting

5 TeNDER PLATFORM

5.1

5.1.1
5.1.2
5.2

5.2.1
5.2.2
5.2.3
5.24
5.2.5
5.2.6
5.2.8

Low Level Subsystem (CERTH — UPM - DW)
HeTRA server and client (CERTH)
Abnormal detection Module (UPM)

High Level Subsystem
Proxy and Authorization server (MAG)
Message broker and Consumer (MAG - UBI)
Electronic Health Record server (UBI)
Remote Document DB (MAG)
Web GUI (UBI)
Smart Band Server (UPM)

Questionary Server (UBI)

6|99

12
14
14
15
16
17
17
17
18
20
20
21
23
23
24
25
29
34
36
36
38
41
41
42
46
48
48
54
58
63
66
74
80

D5.4 — First version of TeNDER Platform

5.3 Hybrid Mobile application (DW)

6 APPLICATION PROGRAMABLE INTERFACES
6.1 EHRAPI (HL7) (UBI)

6.2 Remote DB Rest APIs (MAG)

6.3 Smart Band APIs (UPM)

7 CONCLUSIONS

REFERENCES

799

83
88
90
93
94
96
97

D5.4 - First version of TeNDER Platform

List of Figure

Figure 1 TENDER'S GItLab lOZiN.......coiiiiiiiiiee et e e e 14
Figure 2 TeNDER GitLab USErs - ProjeCtS ...cccviieicciiiie ettt e e e 15
FIUPE 3 CI/CD WOTKFIOWeiievee ettt ettt ettt e e e et e e et e et e eeateeeteeeenneeennes 15
FISUIE 4 CI/CD PIPEIINE .ottt ettt ettt ettt ettt tee et e et e e s abe e e beeeeabeeeabeeesareeennes 16
Figure 5 JOb eXeCULION OULPUL ..oocviiii ittt e e e e s e e eaes 18
Figure 6 Error notification mMail.........cocciieiieiiii e 19
Figure 7 TeNDERs private docker iNStanCe.......coccvviiiiciiiie it 19
Figure 8 Docker Hub TENDER rePOSItONY....ccuuiiiiiciiiieiiiiieeeciiiee st e e eeriee e raee e s sveeee s snaeeeseans 20
Figure 9 TeNDER services running 0N StAZE ENVcuuuiviiirirererimerereeereerrereereeresmre. 21
Figure 10 TeNDER services running on production €NVcccccuveeeeeiiieeeccieeeeccieeeeeveeee e 22
Figure 11 Periodic integration teStS.....cuiii it e e sbae e e eaes 24
Figure 12 Integration test @XECUTIONuviiiiiiiiiiiiiiiiieeeeeee e e s reeeaeeeaeeeseeerereaeaee 25
Figure 13 TeNDER platform consuming rate (Scenario 1)cccccceeeceeercieeeiie s 26
Figure 14 TeNDER platform consuming rate (SCeNario 2)cccceccueeeceeeecieeeieeeriee e 27
Figure 15 TeNDER platform consuming rate (Scenario 3)......ccccecoueeeeecieeeeecieeeeecieeeeeciieee s 28
Figure 16 MONItOriNg t0O0ISuiiiiiiiiei ittt e e sbee e e e s sbee e e e sbeeeeeeans 29
Figure 17 Monitoring framework architeCture.........cccveeeeeiiiei e 30
Figure 18 Prometheus Chartc..oeiiiiiie ittt et e e e ree e e s e beeeeeeans 31
Figure 19 Performance metrics from LLSoooiiiiiiiiiiiie e e s eiaee e 31
Figure 20 Prometheus AlertManagercoccuiieeieciiieecccieee ettt ettt e e et e e e e ctte e e e e erte e e e ebeeeaeeans 32
Figure 21 TeNDER dashboards 0n Grafanacccceieciiiiiiiiiei e 32
Figure 22 Netdata Web GUI ...ttt st e e s ebae e e 33
Figure 23 List of running containers in CAAVISOr GUIccuvviieciiieecciiie et 34
Figure 24 Recourse allocation in the production environment.........c.cccveevvciiiiiiciieeescciieeeens 35
Figure 25 Recourse allocation in the stage environment...........ccocveeeeciiieecciiee e e 35
Figure 26 Recourse allocation per running CoNtainercccveeeeciieeeeciiee et 36
Figure 27 Metrics from SPOMINCICA installation Sit€.........cccveeivciieiiiiiiie e 37
Figure 28 Rules status in Prometheus SEIVENcoiiciiiii ittt 38
Figure 29 Server CPU UtiliZation FUIEooiciiiie ettt et 39
Figure 30 Server memory Utilization FUlEcooccuviiiiciiie e 39
Figure 31 Server storage Utilization 80%ccccueerierriiieniieeeiie e esee e stee e see e evee e e 39
Figure 32 Filesystem run-out prediction rulecocviiiiiiiii e 39
Figure 33 Container CPU USAZE NUIEuiieeee ettt e e cteee e e e e e e e nnrae e e e e e e e eeannes 40
Figure 34 Container MemOry USAZE MUIE ...ccccoceeiiiiieeeee ettt e e e e e e e e nnrrre e e e e e e e ennes 40
Figure 35 Container disk USAZE FUIEcooeiiieiiciiiee ettt e e e e 40
Figure 36 TeENDER LOW LeVel SUDSYStEM ..cccccoeeeiiiiieece ettt e e eerrr e e e e e e 41
Figure 37 SenseLib schematic description.......ccccuveiiiciiiiicciiee e 42
Figure 38 HETra ClIENt GUIL ...ueeiiie ittt e e e e e et r e e e e e e e e e nnrae e e e e e e e snannes 43
Figure 39 HETra SErVEr GUILuuuiiiiiiiiiiiiieeieieeeeeeeeeeeeeeeeeeeseeeeeeeseeeeeseeeeaeeersrsrsssrarsransrerersnnnnrnnes 44
Figure 40 Unit TESTS @XECULIONuuiiiiiiiiiiiiiiiiiieiiieitvereeteeve e rere s rerereresesereaesesereseserereseneren 46
Figure 41 Unit Test @XeCULION FESUILSciviiei ittt e e e e nrrr e e e e e e e enees 46
Figure 42 Abnormal detection MOodUleeeiiiiiiiiciee e 47
Figure 43 TENDER SECUIE PrOXY SEIVEIuuuuuuerererererererererererereserererererereresesereremm————————. 49
Figure 44 Clients on TENDER ralm.uuiiiii ittt e e e e e e nrre e e e e e e e ennes 50

8|99

D5.4 — First version of TeNDER Platform

Figure 45 Traefik health dashboard.........ccccuiiiiiiiiiie e 50
Figure 46 Traefik Dackend SEIVICES.......uvii it baee e 51
Figure 47 CKAN tESt FESUILS ...uviiiiiiee ittt e e st e e s svre e e s sbeeeeseans 83
Figure 48 TENDER'S APP SECLIONS ...eiiiiiiieeieiiiee ettt ettt etre e e e etee e e e e bte e e s e raeeeeeabaeeaeenes 84
Figure 49 An example of APl response form console........cccuveeeeciieiicciiie e 86
Figure 50 An example of APl response form ConSoleoccvveeiicieiiiniiiee e 86
Figure 51 Unit test to check a new reminder creation...........cceecveeeeeciiiecccieee e 87
Figure 52 Unit test to check an updated of an event in the Reminder section...........c.......... 87
Figure 53 Unit test to check vocal remindercc.ueeiiviiiiiciiee e 87
Figure 54 Unit test to check speak phrase eVentcccoovciieiicciiee et 88
Figure 55 Unit test to check reminder deletion ..o 88
Figure 56 TeNDER'S dOCUMENTALION SEIVETcciiicviieeieiiieeeeiiee et e ecttee e e ectte e e s e svae e e e enraeeeeans 89
Figure 57 APl documentation of the HAPI FHIR SEIVENc..ceeieciiieiecieee ettt 90
Figure 58 HAPI FHIR server APl SChEmMas........cuiiiciiiiiiiiiee ettt e e s e s svaee e 91
Figure 59 Patient resource structure (from: https://www.hl7.org/fhir/patient.html) 92
Figure 60 Part of POstman Collection.........occuuiiiiiiiiii i 93
Figure 61 APl documentation of the Remote MonNgO DB.........ccccovieiirciiiieeciiee e 94
Figure 62 APl documentation of the Smart Band APl..........cc.oeeecciieeicciiie e 95

9|99

D5.4 — First version of TeNDER Platform

List of Tables

Table 1 - Consortium Partners LIStcueeiiciee ittt e et e e e ebae e s e eaaae e e e 2
Table 2 Stage SEIVEr flAaVOrooo it e e re e e s ebae e e e sreaeaeeans 21
Table 3 Production SErVEr flavor ...t sbee e e 22
Table 4 Monitoring SErVEr flavor ... e erae e e e 29
Table 5 SENSEID tESt ... e e serae e en 44
1] o] LI S X O T=T o o] U URPRNt 45
TADIE 7 SEIVEI TEST .ottt e et e et e e e et e e e s ebteeesebteeeeentaeeesanraeeeanns 45
Table 8 MoNgO CONNECEIVILY tESE. ..viiiiiiiie i 48
Table 10 Test CONTAINEIS STATUSuviiiiciiee ettt et e e et e e e e e be e e e e ereeeeeereeeeeenns 52
Table 11 Test Keycloak configurationcueeeieciiie i 53
Table 12 Test Proxy and Authorization servers endpoints......cccoccveeiiciiieiiiieee s 53
Table 13 Mongo HTTP APl CONNECHIVILY tESt...ieiiiciiieieiiiee it et e ettt et e e ee e 65
Table 14 Mongo HTTP API Rehabilitation test........ccccecviiiiiiiiiiiciie e 65
Table 15 Mongo HTTP APl smart band test.........cceeiiiciiiiiiciiee e 66
Table 16 MoNngo HTTP APl ABD tESt. c...uviiieiiiieeieiiie et e et e et e e etre e e e evee e e s enteeessreaeeeenns 66
Table 17 Utils Component for Custom Calendar Daycccceeviecieeeieiiieeeccieee e siieee e 70
Table 18 Utils Component for Custom List @Mccccuviiiieciieiicieee e 70
Table 19 Utils Component for Custom Calendar Daycccceeeeecieeececiiiee et 71
Table 20 Utils for Admin’s CONtAINEr.......coiicuiiiiiciiee et e e e e svee e e 71
Table 21 Utils for Language Selector’'s CONTaiNEr........c.ueiiieciiieeeccieee et eecttee e eetee e e eveeee e 71
Table 22 Utils for Localization’s CONTAINETccccuviiiieciiiii et e e 71
Table 23 Utils for Patient Info’s CONtAINENcooviiiiiiiiiie e 72
Table 24 Utils for Safety and Wellbeing’s CoNtainer.........cccueeeieciiie et 72
Table 25 Utils for Sleep Diary’s CONtaiNercciccuieiiiiciiee ettt e e e e e e sneeee e 73
Table 26 Utils for List Devices AdMin's SCENES.......cccoccuiiieieiiieeeeiieeeeecteeeeectteeeeecreeeeeesreeeeeeans 73
Table 27 Utils for Patient List DOCLOI’'S SCENESceeieviieeieiieee et eeeectteeeeectte e e e evte e e e eevaeee e 73
Table 28 Utils fOr HOME'S SCENESeiiiiiiiiieeite ettt ettt ettt e s 74
Table 29 ULils FOr ROOT.....cciiiiiie ettt ettt ettt e e e e e e et e e e e e bt e e e e enteeeesnraeaeenns 74
Table 30 Smart Band backend teStc..eiviieriiiiiieeiiceecte e 76
Table 31 Database tESt ..c.uii ittt e s sare s 77
Table 31 Recommender HTTP API tESt....cccccuiieeiciiieeiciiie e ettt e et eette e e e et e e e e eare e e e enraeaeeans 79
Table 33 POStEreSQL DB LEST ..cccciviiiiiciiiee ettt ettt e e s tre e e e ebre e e e sreaeeeenes 80

10 | 99

D5.4 - First version of TeNDER Platform

Executive Summary

This deliverable describes the first version of the TeNDER platform as an integrated open
ecosystem based on the requirements defined in WP1 and WP2. It also discusses the tools
that are used to support Continuous Integration (Cl)/Continuous Delivery (CD) and testing in
the context of the Tasks 5.4 and 5.5. Moreover, a brief description for each component of
TeNDER platform is provided and a detailed presentation of the selected tools and the
development, production, and monitoring environments that are used is given.

These tools support the platform development and guarantee the allocation of the
appropriate resources for the deployment and execution of the services. Furthermore, this
document provides the definition of several types of manual and automated testing
procedures on component level as well as integration and qualification tests of the system
platform. The first results from integration and validation tests prove that the platform is
functional and meets the requirements for the first wave of piloting. As the development of
the platform is in progress, the final version of the TeNDER platform and the future updates
regarding the testing and validation procedures will be presented in the D5.5, which is the
last deliverable of the WP5.

11 | 99

D5.4 - First version of TeNDER Platform

1 INTRODUCTION

This document presents the selected set of tools for supporting software development,
technical validation and deployment of the TeNDER platform, based on CI/CD approach and
a comprehensive resource allocation monitoring system.

The adoption of the CI/CD approach for the TeNDER software development enhances the co-
design process and minimizes the elapsed time between the definition of the software
requirements and their integration to the next software release, the so called “cycle time”
[1]. In particular, the ClI enables developers to regularly merge their code changes into a
central repository and trigger automated procedures for building and testing their
components in order to address bugs quickly and improve software quality. On the other
hand, CD is the next step of Cl, that enables the delivery of the component for system and
integration testing and then for the release in production. This does not mean that every
change is delivered automatically in production, but that there is a testing mechanism that
can ensure that every change is applicable at any time [2]. According to the best practices for
Cl [3], the following tools should be part of a state-of-the-art Cl framework:

e atool for source version control

e atool for automatic building, dependency checking and automatic testing

e atool to keep tracking of the issues in order to fix them immediately

e atool for automatic deployment, providing the capability to deploy on demand any
version of software to any environment

In this context, pipelines have been defined for each one of the components which describe
a typical workflow with the steps that source code goes through to make its way to
production, and involves code building, testing, and deploying to any environment. All the
code is kept on a binary repository that manages the version control and provides all the
latest versions of the components for deployment on the staging environment, execution of
the integration and quality acceptance tests before being deployed on the production
environment. This phase is part of the CD and is done by specific scripts for packaging,
deploying and changing configuration often called as configuration management tools. The
most appropriate tools for the CD are (a) repository for binary distribution; (b) tools for
deployment and test applications in any environment and (c) report mechanism for providing
feedback to the developers and testers.

Furthermore, the knowledge of the utilization status of the available computational resources
in every environment is crucial to guarantee that any service of the platform has the
appropriate resources to function properly. In addition, the resource allocation per
application is also interesting information for the detection of potential bugs like memory
leaks etc. Therefore, the design and deployment of a comprehensive monitoring solution as
an additional tool is mandatory for the validation of the platform and the assurance of the
provided Quality of Service (QoS).

The document is structured as follows:

Section 1 is the introduction of the deliverable discussing the contribution and scope of the
document.

Section 2 presents the CI/CD tools which are used for the development of the TeNDER
platform as well as the different deployment environments.

12 | 99

D5.4 — First version of TeNDER Platform

Section 3 presents the testing procedures that have been implemented until now, focusing
on the first version of system integration and qualification tests.

Section 4 describes the tools and the architecture of the monitoring system that has been
deployed for the monitoring of resource allocation.

Section 5 provides a brief technical description of the components of the TeNDER platform
focusing on the integration of each one of them with the CI/CD mechanism for automated
build, test, and deployment.

Section 6 presents the central documentation server which provides documentation for all
TeNDER RESTful APlIs.

Section 7 concludes the document.

13 | 99

D5.4 — First version of TeNDER Platform

2 Hosting Infrastructure Components

This section presents the hosting infrastructure and the tools used for the development,
testing, and deployment of the TeNDER services. TeNDER uses DevOps® and CI/CD
approaches that enable the exploitation of the platform as an integrated ecosystem based on
the requirements set by the WP6 regarding the three phases of piloting. Building on top of
these technologies TeNDER enables the management and control of the DevOps cycle for the
continuous deployment and integration of added value services and their components.
However, in order to support the above-mentioned activities, a consistent infrastructure was
created which supports virtualisation of HW resources, i.e. processing power, memory,
storage and network resources. For this reason, the approach used is the introduction of
incremental steps towards integration, validation and testing of TeNDER components
exploiting three environments (aka infrastructure versions). These infrastructures are: (a)
Development infrastructure; (b) Stage infrastructure and (c) Production infrastructure. This
section discusses mostly the deployment of these infrastructures as well as the description of
the tools that are used in the context of TeNDER in MAG premises.

2.1 CI/CD workflow

The core component of the development process TeNDER is a private instance of GitLab [4]
which provides a collaborative environment for software development, version control and
CI/CD management. The private instance of the GitLab is hosted on a dedicated Virtual
Machine (VM) in MAG cloud infrastructure in which every developer has two factor
authorized access (Figure 1) and she/he can create her/his own repository and add other
users as members. GitLab also provides a complete CI/CD framework which uses pipelines.

v

TeNDER's private code repository

Sign in Register

Username or email

Password

Affective based integrated care for better quality of life

Remember me Forgot your password?

Figure 1 TeNDER's GitLab login

3 Gitlab DevOps approach. Available at: DevOps | GitLab

14 | 99

https://about.gitlab.com/topics/devops/

D5.4 — First version of TeNDER Platform ‘

gp» GitLab Projects ~ Groups ~ More ~ Il_'l a

é‘ Admin Area * Dashboard

Projects: 28 Users: 40

b
oo
om . .
Statistics Features
Forks an up
@ Fork 1 Si
& ssues 18 LDAP @
Merge Requests 268 Gravatar
o)
Notes 742 OmniAuth @
i
Snippets 1] Reply by emai 0
@ SSH Keys B Container Registry o []
@ Milestones 0 Gitlab Pages 0
o Active Users 35 Shared Runners []

Figure 2 TeNDER GitLab users - projects

At this point, there are 28 active projects and 40 developers who created code for the TeNDER
platform (Figure 2). A generic view of the CI/CD workflow is shown Figure 3, in which we can
see how the GitLab tool in integrated with the stage and production environments based on

CI/CD pipelines.
Docker
Private
Registry
tendergitlab.maggiolicloud.it
o T E—— Docker Iv@ Docker 73(@

Stage:env
185.146.161.245 >

CI PIPELINE @

Figure 3 Cl/CD workflow

Production:env
185.146.161.244

il
i
il

/
|
|

2.1.1 CI/CD Pipelines

Every time a developer pushes small code chunks to a project hosted in a Git repository,
she/he triggers a pipeline (Figure 4) of scripts to build, test, and validate the code changes
before merging them into the main branch. Then, the CI/CD framework deploys the new
version of the component to stage environment.

Page 15|99

D5.4 — First version of TeNDER Platform

s C & tendergitlabmaggiolicloud.it/panos_k/tnd-hapi-fhir/pipelines/1034 * & » M/
& Gitlab Projects v Groupsv Morev L v Search or jump to...

T Panos K > tnd-hapi-fhir > Pipelines > #1034

o | @psssed | Pipeline #1034 triggered 1 month 2go by Luis Santos ‘ Delete

Merge branch 'develop’ into ‘master’

o Fix response bug
1 See merge request 1172
k3
@ 5 jobs for master in 7 minutes and 35 seconds (queued for 3 seconds)
@
m ER
a
0 d7dabecc O
&% 11 No related merge requests found.
o]

Pipeline Jobs 5

Build Deploy List_services Int-test Create_p_images

@ build_images o @ deploy_hapi_fhir o @ st_apps o @ run_test < @ create_prod_ma.. ®

Figure 4 CI/CD pipeline

Each pipeline consists of a set of jobs which can also be triggered manually through the web
interface by pressing the appropriate button. When the pipeline is triggered, the job is
assigned to the runner process which links to the specific repository and executes it in
environment of our choice. The output of the job is displayed in real time to the GitLab web
interface. This set of steps can be shifted or skipped depending on developer's requirements.
Next, we describe in detail the different steps of a typical the CI/CD pipeline.

2.1.1.1 Container build

TeNDER uses Docker containers as host for its components, so the first step is to build the
images for all components that are developed in the repository and push them to the private
docker registry of TeNDER. The building of a Docker container can be scripted as follows:

build_images:

only:

refs:
- master

stage: build

script:
- docker build -t hapi-fhir-server -f dockerfile/stage/Dockerfile .
- docker tag hapi-fhir-server tender-registry:5000/hapi-fhir-server:sta
- docker push tender-registry:5000/hapi-fhir-server:sta

tags:
- stage

Where:

e docker build: The instruction to build the container.
e -f Dockerfile: The location of the Dockerfile.

Page 16|99

D5.4 - First version of TeNDER Platform

e -t tender-registry:5000/<container_image_name>: The name of the container
image. The first part is the internal docker registry, and the second part is the image
name.

2.1.1.2 Unit Tests

During the unit test stage developers can perform software testing of an individual unit or
component. This kind of tests isolates a section of code and verify its correctness. The use of
containers has a significant advantage in designing and executing unit tests. The developer is
not required to create mock-ups of each component as it depends on his implementation.
For example, in case of databases, sometimes it is time expensive to build a mock-up. With
Docker, it is quick and straightforward to just start a docker container with the database and
connect the under-test container to it. Once a container passes the unit tests, the test
database can be easily removed.

2.1.1.3 Service deployment

During the deployment stage the containers of each service are deployed on the stage
environment. The containers can be started separately, or the developers can use
technologies like docker-compose, docker swarm etc.

deploy _hapi_fhir:

only:

refs:

- master

stage: deploy
script:

- docker-compose -f docker-compose-stage.yml up -d hapi-fhir-server
tags:

- stage

Where:

e Docker-compose up:The instruction to start the docker-compose.
e -f docker-compose-stage.yml: The location of the docker compose file.

2.1.1.4 Integration Tests

After the successful deployment of the service in stage environment the developers can
trigger other CI/CD pipelines using the provided APl from the GitLab. In TeNDER we use this
functionality to execute end-to-end integration tests after the deployment of each service in
the stage env. More details regarding the integration tests are available in section 3.2.

run_test:
stage: int-test
script:
- apk update
- apk add curl
- curl -s -X POST

-F token=0f2c5b4019231cd48f49fe229746F2 \

-F ref=master \

-F "variables[TEST_SCRIPT]=int-test-hfir.sh" \
https://tendergitlab.maggiolicloud.it/api/v4/projects/32/trigger/pipeli
ne

tags:
- stage

17 | 99

D5.4 - First version of TeNDER Platform

Where:

e curl POST <test_uri>: Trigger integration test through API

e -F token=<token>: Authorization token

e -Fref=<branch>: Repository branch

o -F “variables[<variable_name>]=<value>": Set variable value

2.1.1.5 Create production images

The images that are used in the production env are created from the last job of the pipeline
of each repository. This job is triggered manually from the developer each time she/he
decides to promote the current version of his service from the stage to the production
environment. During this stage, the latest version of the stage images are tagged with the
appropriate version number and they are pushed to private docker registry.

create_prod_images:

only:
refs:
- master
stage: create_p_images
script:
- docker rmi tender-registry:5000/hapi-fhir-server:prod || true

- docker build -t tender-registry:5000/hapi-fhir-server:prod -f
dockerfile/prod/Dockerfile
- docker push tender-registry:5000/hapi-fhir-server:prod
when: manual
tags:
- stage

The history of the executed jobs as well the outputs logs are kept by the CI/CD tool and are
available to the developer at any time (Figure 5).

¢ C @ tendergitlabmaggiolicloud.it/panos_k/tnd- Y Y.

&P Gitlab Projects v Groups v More Seachorumpio.. @ O 1Y B @v @~

T B g+ ¢ N —
deploy_mongo_api ‘ Retry ‘
panos_k/tnd-mongo-rest
o
Duration: & seconds
/builds/ k/tnd-mongo-rest . .
Timeout: 1h (from project) [}
Runner: stage-env (£2)
o /builds/panos_k/tnd-mongo-rest Tags:
n total 12 Commit dcisadsf B
> -PW- - 1 root root 5426 Jul 2 17:26 README.md Update cicd pipeline
d -rw-rw-rw- 1 root root 1598 Jul 2 17:26 docker-compose.yml
=~ drwcrwxewx 2 root root 43 Jul 2 17:26 examples
@ AWK 3 root root 66 Jul 2 17:26 mongo_rest G AR P oley
druxrwcrux 3 root root 141 Jul 2 17:26 ngin deploy
-rw-r--r-- 1 root root 8 Jul 2 17:26 test_file
Docker version 19.03.8, build afacb8b7fe = (2)deploy_mongo_api
% i . .
docker-compose version 1.26.2, build eefe@d3

Stopping tnd-mongo-re

Removing tnd-mong

Removing tnd-mong

Removing tnd-mong

Network data_net

Creating tnd-mongo-rest_s
Creating tnd-mong
Creating tnd-mong ak-gatekeeper_1 ...

Creating tnd-mongo-rest_mongo_api_1

Figure 5 Job execution output

18 | 99

D5.4 - First version of TeNDER Platform

In case an error occurs during the execution of one of the jobs, the entire pipeline fails and a
notification email is sent to the involved users (developers/maintainers etc) who triggered
the pipeline either by pushing new code or manually through web interface (Figure 6).

A_A

X Your pipeline has failed.

Panos K / tnd-mongo-rest
master

718c8e3f
update cicd pipeline

Panos K

Pipeline #1164 triggered by Panos K
had 1 failed build.

Logs may contain sensitive data. Please consider before forwarding this email

x unit_tests

pDocker version 19.03.8, build afach8b7f0
§ docker-compose --version

$ echo "Test Connection between srv and DE"”
Test Connection between Srv and DB
§ docker exec -it tnd-mongo-rest_mongo_api_1 sh -c "python3 manage.p
y test api.tests.DBConTestCase"
the input device is not a TTY
Cleaning up file based variables
ERROR: Job failed: exit code 1

Figure 6 Error notification mail

Following these methodologies, developers are able to catch bugs and errors early in the
development cycle and ensure that all the code deployed to production complies with the
established code standards.

Another component of the CI/CD framework is private Docker registry (Figure 7) which is used
for the storage of different versions of the TeNDER components for both stage and production
environments. It is worth to mention that in TeNDER we also created a public repository
(Figure 8) for container images hosted in Docker Hub for the services running on the Low
Level Sub System (LLS).

[tender@tender-stage ~]$ curl -s http://tender-registry:5eee/v2/_catalog | jq '.'

H

Figure 7 TeNDER’s private docker instance

19 | 99

D5.4 — First version of TeNDER Platform ‘

wdockerhub Q, Search for great content Explore Repositories Organizations Help ~ @h tenderhealth ~

tenderhealth Repos

tnd-abnorm-dtc Using 0 of 1 private repositories. Get more

General ags Builds Collaborators Webhooks Settings

@ Advanced Image Management

View preview
View all your images and tags in this repository, clean up unused content, recover untagged images. Available for Pro and Team accounts. =

® tenderhealth/tnd-abnorm-dtc Dacker commands

his repository does nat have a description & To push a new tag to this repository,

@ Last pushed: 5 months ago docker push tenderhealth/tnd-abnorm-dtc:tagname
shed: 8

Tags and Scans @“«‘JLKER%BIJWSC;\M\G-D\SAELED Recent builds

Enatle Link o source provider and run a build to see build results here.

This repository contains 1 tag(s).

TAG 0s PULLED PUSHED

® V.0 A 2 months ago 5 months ag0

seeall

Figure 8 Docker Hub TeNDER repository

2.2 Development Environment

The Development environment is a workspace for developers to test anything they want
without worrying about affecting any other users or developers working on a live deployment.
In most cases, a development environment is set up on a local server or on the machine that
developer uses, so the source code is ready to be executed and modified if needed. So, in
TeNDER, developers use the tools and technologies of their choice (i.e. programming
language, frameworks, IDE etc) and build the appropriated docker containers. Next, the
service is executed in their local development environment.

2.3 Stage Environment

The Stage environment is hosted on the MAG cloud infrastructure, and it consist of VMs in
which all the High-level Services (HLS) of TeNDER are deployed and tested based on the CI/CD
framework provided from the GitLab repository. Based on specific CI/CD pipelines each
component can be built, deployed and tested in the stage env using the Gitlab runners that
are installed in the stage environment server. This approach provides to the developers an
area where the entire TeNDER platform is deployed, in which any new version of a component
can be deployed, tested, and validated before the deployment in the production. The stage
environment is scalable, and it can be enhanced with more resources by adding new servers
as the TeNDER platform grows. Table 2 shows the predefined flavor of the servers that are
host the stage environment and Figure 9 presents the list of the running services in stage
server.

Page 20|99

D5.4 - First version of TeNDER Platform

Table 2 Stage server flavor

Server flavor

vCPUs 4

RAM memory 8GB

IP address 185.146.161.245

Storage 120GB

#NICs 2

oS Centos 7

Software Gitlab runner
Docker/Docker Compose

[tender@tender-stage ~]$% docker ps -—-format "{{.Names}}"
upm—-fitbit-server_backend_1
upm-fitbit-server_mongo_1
worker_reports

worker_ckan
tnd-mongo-rest_mongo_api_1
tnd-mongo-rest_keycloak—-gatekeeper_1
tnd-mongo-rest_nginx_1
tnd-mongo-rest_mongo_db_1
web_app

ckan

tender—-consumer-ubw

netdata

tnd-dt-consumer

tnd-broker
hapi-fhir-jpaserver
auth-server_keycloak_1
auth-server_keycloak_db_1
auth-server_traefik_1
tnd-doc_swagger-ui_1
cool_bhaskara

cadvisor

upbeat_heisenberg
datapusher
hapi-fhir-postgres

db

redis

solr

Figure 9 TeNDER services running on stage env

2.4 Production Environment

The production environment is also hosted on the MAG cloud infrastructure, and it consists
of virtual machines in which the stable version of the TeNDER platform is deployed and
offered to the end users. The deployment is based on a CI/CD pipeline especially created of
this process and the platform can be deployed either all at once or we can manually deploy
each component separately. In any case, the update process can be done without affecting
the user’s data because all databases are mounted on virtual volumes which are not affected
from the redeployment of the components. The CI/CD pipeline is kept in a separate repository
in TeNDER’s private Gitlab called tnd-production [5]. Following the same design approach of
the stage, the production environment, this is also scalable and it can easily be scaled up by
adding new servers to provide the appropriate resources to ensure the QoS level to the users.
Table 3 shows the predefined flavor of the servers that host the production environment and
Figure 10 presents the list of the running services in stage server.

21199

D5.4 - First version of TeNDER Platform

Table 3 Production server flavor

Server flavor

vCPUs 6

RAM memory 12GB

IP address 185.146.161.244

Storage 160GB

#NICs 2

oS Centos 7

Software Gitlab runner
Docker/Docker Compose

[tender@tender-prod ~]1$ docker ps --format "{{.Names}}"
web_app
mongo-rest_mongo_api_1
mongo-rest_nginx_1
mongo-rest_keycloak-gatekeeper_1
tender-consumer-ubw
netdata
device-api_backend_1
device-api_mongo_1
tnd-dt-consumer
tnd-broker
hapi-fhir-jpaserver
auth-server_keycloak_1
auth-server_traefik_1
hapi-fhir-postgres
cadvisor
auth-server_keycloak_db_1
ckan
mongo-rest_mongo_db_1

db

solr

redis

datapusher

Figure 10 TeNDER services running on production env

22199

D5.4 - First version of TeNDER Platform

3 TESTING AND VALIDATION

This section discusses the tools that were evaluated to support the CI/CD workflow and to
help the developers not only to monitor their deployments in stage and production
environments but also to evaluate the functionality and the performance of the platform.
These tools, include available open-source solutions and frameworks used for automation,
validation and testing. During the first year of the project, we introduced a set of new tools
that are mentioned in the following section. Most of the tools require expertise, and a
learning curve to be digested and adopted by the team members. Nevertheless, as the
development on new components and services is an ongoing procedure, we focused on
practicing and evaluating the most known tools in order to be able to include them in the
testing procedure as the TeNDER platforms expands.

3.1 Testing tools

As part of the followed methodology, several open-source tools and frameworks were
considered. This section presents a brief overview of the frameworks and tools considered
and the ones finally used.

The considered frameworks were:

e Watir [6] stands for “Web Application Testing in Ruby” and it is an open source Ruby
library for automating tests. Watir interacts with a browser the same way people do
clicking links, filling out forms and validating text.

e Robot [7] is a generic test automation framework for acceptance testing and
Acceptance Dest-Driven Development (ATDD). It has easy-to-use tabular test data
syntax and it utilizes the keyword-driven testing approach. Its testing capabilities can
be extended by test libraries implemented either with Python or Java, and users can
create new higher-level keywords from existing ones using the same syntax that is
used for creating test cases.

e pyTest [8] is a python-based test framework for testing applications and python
libraries. It is used from command line and requires tests to be formatted in a specific
way so the framework can identify and execute them.

e Shell — UNIX [9] shell scripting may be used to create testing scripts that use the
available Application Programming Interfaces (APIs) to make integration and
validation tests.

e Jmeter [10] is a 100% pure Java and has an Ubuntu installer in order to be used by
command line to perform the tests or via GUI. It may be used to test performance
both on static and dynamic resources. It can be used to simulate a heavy load on a
server, group of servers, network or object to test its strength or to analyse overall
performance under deferent load types.

e Apache HTTP server benchmarking tool [11] is a load testing and benchmarking tool
for Hypertext Transfer Protocol (HTTP) server. It can be run from command line and
itis very simple to use. A quick load testing output can be obtained in just one minute.
As it does not need too much familiarity with load and performance testing concepts,
it is suitable for beginners and intermediate users. To use this tool, no complex setup
is required. Moreover, it can either be installed automatically with Apache web
server, or it can be installed separately as Apache utility

The above list contains a small part of the available solutions for code test and automation.

Furthermore, many programming languages and frameworks have developed their own
testing libraries which in many cases are very flexible and easy to use. So, in TeNDER we let

23199

D5.4 — First version of TeNDER Platform

free the developers to decide which tool they want to use based on the technology that they
choose and the testing requirements of their implementations.

3.2 Integration tests

The integration phase is composed by a set of tests with the main goal of testing the
interaction between the different components of the TeNDER paltform. For this purpose, a
series of tests was created starting with the deployment of all the containers in the stage
server. At the end of the deployment phase the CI/CD pipeline triggers the integration tests
that are hosted in different repository [12] through a specific API call to the TeNDER GitLab.
Eachintegration test is implemented as a bash script and is executed by the appropriate CI/CD
pipeline. Currently the integration tests perform end-to-end testing between the following
components:

e Message broker (RabbitMQ)

e Message consumers

e Remote Document Database

e Authorization and Authentication server

e TeNDER EHR (HAPI FHIR server)

There are three ways of executing the integration tests:
e Triggered by schedule: Every night at 3 - 4 am all tests are executed periodically
(Figure 11).

LY Projects v Groups ¥ More v

T Panos K » tnd-int-tests » Schedules

New schedule
r
All 2 Active 2 nactive 0
B
Description Target Last Mext Owner
1) —esenpte e Pipeline Run oE
B o Rl (A -
I e.rlccllc ntegration test #2 ._KE#CﬁLCH(- ‘ ¥ master @ #1271 in 15 > s n
RABBITMQ - COMNSUMER - HAPI FHIR SERVER) = hours Panos K
4
Periodic Integration test (KEYKLOAK - ¢ master P in 16 > 2 n
o RABBITMQ - CONSUMER - MONGO DB AP} rester WP hours Panas K

Figure 11 Periodic integration tests

e Triggered by other Pipeline: There is the possibility to trigger a pipeline from another
one. So, after the build, deploy, test jobs of the deployment pipeline we trigger the
specific integration test. (See subsection 2.1.1.4)

e Triggered manually: An integration test can be triggered manually from the web
interface of the TeNDER GitLab.

At this point the end-to-end testing involves the all the active components of the TeNDER
platform. However, as the development of new components and their integration with the
TeNDER platform proceeds, these tests are going to enhanced with new ones in the future.
Currently, one of the typical integration tests which is executed each (sequentially) or after
each day code push consiting of the following phases (Figure 12):

e Phase 1: Token Request from authorization and authentication server.

24|99

D5.4 - First version of TeNDER Platform

e Phase 2: Registration of new Users and Devices. At this point, we create new Users
(ex Doctor and Patient) and we create new devices (ex sleep-tracker, smart-band,
kinect etc) correlated with the specific patient for test purposes.

e Phase 3: Publish simulated data to the message broker (RabbitMQ).

e Phase 4: Retrieve data from Remote Document Database using the appropriated
HTTP API.

e Phase 5: Retrieve data from TeNDER EHR (HAPI FHIR) using the appropriated HTTP
API.

e Phase 6: Clean the environment.

Projects v Groups

RO i o+

int_test

Duration: 20 seconds

ey! T1N3TSINRSCCIg01AIS1dUTin1a 21k 1ASICIOSHFCaF BRV3NrVZdENKNN:
VHTVTRKOS 1mOTHRYZQ2ZT1kZDT 1L € 1eHALOFE 2MiczN fMxh EsTnS171 T6MEwd alFBT joxh /xLCIpc3Hi01 JodHRuc zovL 2F1dGgt CIRhZ2Ut dGVuZGVy Lu1hZ2dpb 2xpY2xvdl
16nQ1LCINYZNVANSEL10s InN1YA EInQuM IBAMKI ALWYRHZME REnner:cl

Timeout: 1h

Tags: €29

BMFpBF922X)pZn1 1ZCT6Zn (© Pipeline £1272 for master
415w bRFEZS T6 TKFKEWLUTFRIBARL CTS InBy2) F91c2VybFLZ: IndpdaVUX2SNEHULOL
2 29 fVWSn@5 8t s18QaSuyQeNCHexYEHu_pIBYRYIHapTYEOUS ABSHES 20K run_test_1
QjL 2kp3935]s! apA2qLiq3uBnA3eS THaw] G4 1KTF Edy1un9KAC epNo6L18X js 3620 -
K dupM6a-5ulp3Hi jYU7Y1sD90X2A 1WpsRHq2X JUBDC FOBL AAN AbSh bzgOFSNQ

~+ @int test

DEVICE POS created:
DEVICE MIC created: 27854
* POST DATA

* Retrieve DATA from remote MongaDe

8D data per USER
suceess (1)

ta per USER

ta per SENSOR
suceess (51)
* DELETE ENTITIES

Figure 12 Integration test execution

3.3 AQualification test

The qualification phase aims to evaluate the performance of the platform. During this testing
phase, we perform tests related to the functionalities, performance, security, and
conformance with the requirements. Following the same approach with the integration tests,
a specific repository was created to facilitate the qualification tests based on the CI/CD tools.
Temporally, the stage environment is used, but as the development process of the platform
proceeds the creation of a new environment dedicated to the qualification testing will be
considered. This is necessary because many tests execute stress actions to measure the
performance of the platform and identify potential “breakpoints” of the services etc. This kind
of actions cannot be performed either in production or in the stage environments. At this
point, we have developed qualification tests for the South Bound Interface (SBI) of the
TeNDER platform consisting of an AMQP/SSL interface for collecting data from pilot site
implementation. The qualification test uses the perf-test library provided from the RabbitMQ
[13] which performs throughput tests on specific queues. This tool is capable to create a
number of publishers/consumers, but in this case, we use only publishers as we want to
measure also the performance of the TeNDER platform on consuming data. Note that this

25 | 99

D5.4 — First version of TeNDER Platform

tool can achieve high rates for publishing (up to 80 to 90K messages per second and
connection). Next, we present results from three different test scenarios.

Scenario 1

This test publishes 1000 messages in total with concurrency level of 100 messages. As we see
from the output of the test we sent all the messages in 19 secs with average publishing rate
of 99msg/sec. However, the TeNDER platform required ~20 secs to consume and process the
incoming messages (Figure 13).

Command:

./stress-test-nbi.sh -q "sum-rehab" -r 100 -c 1000 -u 127.0.0.1 -m "re-hub.json"

Output:

queue: sum-rehab

rate: 100

tolal number of messages: 1000

uri: 127.0.0.1

msg file: re-hub.json

id: test-143715-071, starting producer #0

id: test-143715-071, starting producer #0, channel #0
id: test-143715-071, time: 1.005s, sent: 91 msg/s
id: test-143715-071, time: 2.005s, sent: 100 msg/s
id: test-143715-071, time: 3.005s, sent: 100 msg/s
id: test-143715-071, time: 4.006s, sent: 99 msg/s
id: test-143715-071, time: 5.016s, sent: 100 msg/s
id: test-143715-071, time: 6.025s, sent: 100 msg/s
id: test-143715-071, time: 7.025s, sent: 100 msg/s
id: test-143715-071, time: 8.025s, sent: 100 msg/s
id: test-143715-071, time: 9.025s, sent: 100 msg/s
id: test-143715-071, time: 10.026s, sent: 99 msg/s
id: test-143715-071, sending rate avg: 99 msg/s
id: test-143715-071, receiving rate avg: 0 msg/s
Messages publishing took 19 secs

VWoOoNOTUVTHEA WN

LT:?S:ED 17:36:55 17:37:00 17:37:05 17:37:10 17:37:15 17:37:20 17:37:25 17:37:30 17:37:35 17:37:40 17:37:4

Figure 13 TeNDER platform consuming rate (Scenario 1)

Scenario 2

In the second scenario, 10000 messages in total are published with concurrency level of 1000
messages. As we see from the output of the test the test tool managed to send all the
messages in 17 secs with average publishing rate of 989msg/sec. However, in this case the

Page 26|99

D5.4 — First version of TeNDER Platform

TeNDER platform required ~40 secs to consume and process the incoming messages (Figure
14).

Command:

./stress-test-nbi.sh -q "sum-rehab" -r 1000 -c 10000 -u 127.0.0.1 -m "re-
hub.json"

Output:

queue: sum-rehab

rate: 1000

tolal number of messages: 10000

uri: 127.0.0.1

msg file: re-hub.json

id: test-145004-901, starting producer #0

id: test-145004-901, starting producer #0, channel #0
id: test-145004-901, time: 1.000s, sent: 901 msg/s
id: test-145004-901, time: 2.000s, sent: 1000 msg/s
id: test-145004-901, time: 3.001s, sent: 999 msg/s
id: test-145004-901, time: 4.001s, sent: 1001 msg/s
id: test-145004-901, time: 5.001s, sent: 1000 msg/s
id: test-145004-901, time: 6.001s, sent: 1000 msg/s
id: test-145004-901, time: 7.001s, sent: 1000 msg/s
id: test-145004-901, time: 8.001s, sent: 1000 msg/s
id: test-145004-901, time: 9.001s, sent: 1000 msg/s
id: test-145004-901, time: 10.001s, sent: 1000 msg/s
id: test-145004-901, sending rate avg: 989 msg/s

id: test-145004-901, receiving rate avg: 0 msg/s
Messages publishing took 17 secs

VCoOoNOOTUVTA WNPR

Figure 14 TeNDER platform consuming rate (Scenario 2)

Scenario 3

In the third scenario, we stressed further the platform increasing the concurrency level to
3000 messages. In this case the test tool managed to send all the messages in 10 secs with
average publishing rate of 2901 msg/sec. However, the TeNDER platform required ~40 secs
to consume and process the incoming messages (Figure 15).

Command:

./stress-test-nbi.sh -q "sum-rehab" -r 3000 -c 10000 -u 127.0.0.1 -m "re-
hub.json"

Page 27|99

D5.4 — First version of TeNDER Platform

Output:

queue:
rate:

tolal number of messages: 10000

uri:
msg file: re-hub.json
test-150258-827,
test-150258-827,
test-150258-827,
test-150258-827,
test-150258-827,
test-150258-827,
test-150258-827,

id:
id:
id:
id:
id:
id:
id:

starting producer #0

starting producer #0, channel #0
time: 1.000s, sent: 2695 msg/s
time: 2.001s, sent: 2997 msg/s
time: 3.001s, sent: 3003 msg/s
sending rate avg: 2901 msg/s
receiving rate avg: © msg/s

Messages publishing took 10 secs

0.8 kis
0.5 kis

0.3 ks

The results from the qualification test provided some very useful conclusions regarding the
performance of the first version of the TeNDER platform. First, the adoption of a
publish/subscribe message broker as SBI of the TeNDER platform provided high incoming
throughput more than 3000 msg/sec which overcomes the current requirements from the
first wave of pilots in TeNDER. However, the platform consumes and processes the incoming
messages in average 340 mgs/sec (green line of Figure 15). This performance is acceptable
for the first wave of pilots but it could be improved in the future versions.

More qualification tests regarding the North Bound Interface (NBI) are under development

Figure 15 TeNDER platform consuming rate (Scenario 3)

and they will be presented in the D5.5.

D5.4 - First version of TeNDER Platform

4 MONITORING RESOURCES

TeNDER platform implements an open, service-oriented architecture which aims to cover all
the operational aspects from actual realization, test, trials and support the pilots in the WP6.
To achieve this goal, it is necessary to provide the appropriate tools in order to guarantee (a)
the integration of the services developed in WP3 and WP4 and (b) the appropriate resources
allocation for service deployment in the deferent environment (i.e. stage, production etc).
Therefore, in TeNDER we designed and deployed a state-of-the-art monitoring and analysis
framework based on open-source tools for collecting performance metrics from every
deployment site. This monitoring system is installed in a separate VM (Table 4) running on
MAG’s cloud infrastructure and collects data from the HLS services and the LLS services
running on pilot sites. Additionally, to guarantee the resource allocation TeNDER's
monitoring system collects information related to the available resources of the servers in
stage and production environments.
Under this perspective, it is of paramount importance to collect monitoring data from as
many possible sources. In the implemented system, there are four different types of sources
for collecting data:

1) Containers (i.e. services running as docker containers)

2) VMs (i.e. service running on VMs or VMs hosting stage/production environments)

3) Physical servers (i.e. physical machines hosting TeNDER services)

4) Network traffic (i.e. network traffic on physical and virtual level)

Apart from the collection and the process of monitoring data related to the performance of
the TeNDER’s services and infrastructure, the monitoring framework will accommodate
specific alerting rules for real-time notification events. In this respect, the monitoring
framework will offer the capability to developers to define service-specific metrics and rules,
whose violation will generate alerts.

Table 4 Monitoring server flavor

Server flavor

vCPUs 4

RAM memory 8GB

IP address 185.146.161.250
Storage 120GB

#NICs 2

0S Centos 7

Software Docker/Docker Compose

[tender@tender-monitoring ~]$ docker ps -—format "{{.Names}}"
alertmanager

mon-pushgateway
mon-prometheus
mon—grafana

Figure 16 Monitoring tools

Monitoring system architecture

TeNDER’s monitoring solution complies with the scalability requirement of the services-
oriented architecture of the TeNDER platform because the selected tools are Cloud Native
(CN) implementations, and the proposed design can easily integrate new types of monitoring
targets without the need for difficult configurations or down-time. So, in case that we need
to scale up the production environment by adding a new server, the only necessary action is

29 | 99

D5.4 — First version of TeNDER Platform

to update the configuration file of the Prometheus monitoring server®. Moreover, for large
scale deployments Prometheus Monitoring servers supports a distributed (cascaded)
architecture. The local Prometheus servers collect and store metric data from the services
deployed in the LLS/HLS, while only the alerts are sent to the federated Prometheus server
for further processing and forwarding to the appropriate users. Another scalability
requirement concerns the large flow of data from the monitoring agents to the monitoring
server and its respective database that might affect the service performance in extreme
cases. To overcome these potential problems the monitoring system (a) is configured to store
monitoring data of a specific period and (b) in cases of large deployment is able adopt the
cascade architecture mentioned above. At the current development status of the TeNDER
platform the monitoring system can be accommodated a by a single server deployment. The
detail architecture is shown in the Figure 17.

- B

{9 Grafana
Pushgateway Alert Manager g
Monitoring Server
185.146.161.250
o B e B
decker WNETDATA docker WNETDATA
cAdvisor cAdvisor
Stage Server Production Server
185.146.161.245 185.146.161.244

Figure 17 Monitoring framework architecture
The architecture of the monitoring system consists of the following components:
Monitoring tools:

e Prometheus server [14] stands as the central point of event monitoring, storage and
alerting. All performance metrics are collected, using a HTTP pull model, and stored
in a timeseries database. Some of the key features that make this server suitable for
the proposed architecture are: (a) use of a flexible query language (PromQL), which
makes easier the interconnection with external systems (b) existence of many
opensource implementations (exporters) for exposing monitoring metrics from
various applications, to create new ones (c) autonomy as there is no reliance on
complex distributed storage mechanisms and (d) new monitoring targets can be

4 Prometheus Server Reference: Available at https://prometheus.io/docs/introduction/overview/

Page 30|99

https://prometheus.io/docs/introduction/overview/

D5.4 — First version of TeNDER Platform ‘

easily added via reconfiguration or by using the file-based service discovery
mechanisms.

<« C A Notsecure | 185.146.161.250:3090/graph?q0.expr=avg%20by(job)%20(rate(netdata_cpu_cpu_percentage_average%7Bdimension%3D"idle"%7D%SBIm%sD)%20.. @ v & # M
Enable query history Use local time Enable autocomplete
Q, avg by(job) (rate(netdata cpu_cpu_percentage_average{dimension="idle"}[1m]))
Load time: 1011ms Resolution: 14s Result series:
Table Graph
= 1h End time Res. (s) L
5.50
5.00
450
400
50
300
250
200
150
1.00
050
10:35 10:40 10:45 10:50 10:55 11:00 11:05 11:10 115 11:20 125 11:30

{job="production-env'}
fiob="staaa-env"}

Figure 18 Prometheus chart

The Prometheus Pushgateway [15] allows batch jobs, running on LLS in pilot sites, to
expose their metrics to Prometheus. Since this kind of jobs may not exist long enough
to be scraped, they can instead push their metrics to a Pushgateway. The
Pushgateway then exposes these metrics to Prometheus server (Figure 19).

Pushgateway Metrics

[} nstance="173456789"

Delete Group

O FTELTEE instance="3FSASDB2_AC2B 4691_8ET5_B509A6281D9F™ Delete Group

0 FTEENTTS) instance="987456123' Delete Group
o] instance="ASCWON115638" Delete Group
(5] instance="A3CWIN115638" Delete Group
[c] instance="ASCWON115638™ Delete Group
(=] instance="UNITOV_HOMESET1" Delete Group

© SIS instance="UNITOV_HOMESET 2" Delete Group

0 PEETI AT RS instance="UNITOV™ Delete Group

O EITIEAIZEED instance=-UNITOV"

Delete Group

Figure 19 Performance metrics from LLS

Page 31|99

D5.4 — First version of TeNDER Platform

e Alertmanager [16] handles alerts sent by client applications such as Prometheus
server. It takes care of deduplicating, grouping, and routing them to the correct
receiver integrations such as email, PagerDuty, or OpsGenie. It also takes care of

silencing and inhibition of alerts.

Alertmanager' Alerts Silences Status Help

Status

Up!il‘ne: 2021-07-29T11:53:18.552Z

Cluster Status

Name: 01FBS1S6EQRP7QPANOVKPXTQYH
Status:

Peers: * Name: 01FBS1S6EQRP7TQPANOVKPXTQYH

Address: 172.17.0.2:9094

Version Information

Branch: HEAD

BuildDate: 20210602-07:50:37

BuildUser: root@b595c7f32520

GoVersion: gol.16.4

Revision: 4418adc06af5101ad04bd8b9c8b 1827312622051
Version: 0.22.2

Figure 20 Prometheus Alertmanager

e Grafana [17] is an open-source solution for running data analytics, pulling up metrics
that make sense of the massive amount of data and it provides interactive

visualization web dashboards (Figure 21).

< C A Notsecure | 185.146.161.250:

88 Home

N L W

Welcome to Grafana Need help? pocumentation Tutorials Community Public Siack

Dashboards Latest from the blog

At Grafana Labs, we are proud to be one of the largest code contributors to Cloud Native Computing

TeNDER Environments
TeNDER System Containers
Alerts

Prometheus 2.0 Overview

to announce that the Kafka int
latform bringing to log:
ming platform that provides high-performance data pipelines, streaming

Figure 21 TeNDER dashboards on Grafana

afana Cloud, our composable
ith Grafana. Apache Kafka is an open

32199

D5.4 — First version of TeNDER Platform

Monitoring Agents:

Netdata.io [18] is a powerful real-time monitoring agent which collects thousands of
metrics from systems, hardware, virtual machines, and applications with zero
configuration. It runs permanently on the physical/virtual servers, containers, cloud
deployments, and edge/loT devices, and is perfectly safe to install on your systems
mid-incident without any preparation (Figure 22).

< C A Notsacure | api-db-stage-tender.maggiolicloud.it:19939/#menu_system_submenu_cpu;thema=slate:help=true * A

o= 921914967248 (1| B & & @& SGNINTOCLOUD

D Last 6 minutes

b b b i A A A A A AR A ALk DAk A LA

Figure 22 Netdata web GUI

cAdvisor [19] provides metrics of the resource usage and performance characteristics
of the running containers. It is a running daemon that collects, aggregates, processes,
and exports information about running containers. Specifically, for each container it
keeps resource isolation parameters, historical resource usage, histograms of
complete historical resource usage and network statistics (Figure 23).

Page 33|99

D5.4 — First version of TeNDER Platform ‘

& C A Notsecure | api-db-stage-tender.maggiolicloud.it:16000/contai.. & Yr & M ﬁ

H

cAdvisor
/docker

root | docker

Subcontainers

2d82445bf6390d458614df08052956ca4ff1292

/docker/1b9da3326ce125dabdecbbd

157c6073ddB84662dd406b8248

/docker/213c713

fdocker/25

/docker/2d63d4b1e946b871330eaf20f011393126fb3c29c628b38 11621591462 6f213

fdocker/2f088605c0f12aclefca29fa02bd 1c09b25d26af69c 14993f8dbal1582a40d 2540

e1068e24935¢h582b2e3d4a705004573980f7ab5Y

fdocker/:

fdocker/

/docker/

Jdocker/

/docker/565e81b11812c2001d0b3aSE446470228802443

fdocker/5c1a0143c73ed62a7bdTb68c5e282

fdocker/T2
Figure 23 List of running containers in cAdvisor GUI

4.1 Stage and Production environments

The monitoring information from the stage and the production environments is collected by
the Netdata monitoring agent, then the Prometheus server scrapes the arriving messages
periodically and stores the information collected to its local time-series database. Next, a
Grafana dashboard has been configured which uses Prometheus server as data source and
visualizes the data via interactive charts. In this way the administrator of the infrastructure
can select the environment of his choice and see in one dashboard all the critical performance
metrics and the current resource utilization (Figure 24 and Figure 25).

Page 34|99

D5.4 - First version of TeNDER Platform

185.146.161.25!

©pu0 +cpul + cpu2 + cpud I solv.conf ~
br-20f559aa13al ~ None ~ None ~
~ System overview: CPU

0% 00168% 0.00319% 0.0168%

0.403% 0.480% 0.415%

softig 0.0500% 0.0990%

system 1.73% 2 3.07%
user 12.2%
0:00 15:10:30 15:11:00 151130 5 15:13:00 151334 151400 15:14:30

System overview: load

System load average

0579 0343
0576 0443
0.620

o
15:10:00 1510:30 151100 1513:00 1513:30 151400
~ System overview: disk

Memory paged from/to disk
SOKEB/s

0kB,

-50kB/s

nvironmen

stage-env ~ cpud +cpul None ~
br-20f559aa13a1 ~ apps

~ System overview: CPU

Total CPU utilization
100%
75%

0% 0.0168% 0.0016! 0%
0479% 0.586% 0. 0.536%
o softirg 0.0335%
system

00 151130 1512:00 1513:00 151330 15:14:00 15:14:30 15:15:00 151530

~ System overview: load

System load average

= load1
= load5s 0100 0.150
- loadls 0200 0.247
1511:00 151200 1571400 1501430 151500 1511530
~ System overview: disk
Disk 1/0

Memory paged from/to disk

Figure 25 Recourse allocation in the stage environment

35|99

D5.4 — First version of TeNDER Platform

4.2 TeNDER HLS services

In TeNDER platform all the services of the HLS are hosted on docker containers. Therefore, it
is crucial not only to monitor the resource allocation on stage or production level but also to
investigate how the available resources are distributed to each one of the running containers.
For this reason, we adopted the cAdvisor monitoring agent which provides detailed
information about the status of the running containers. Following the same approach,
Prometheus pulls periodically data from cAdvisor agents running on stage and production
environments, and stores them in its local timeseries database. Next, a specific interactive
dashboard has been developed to visualize the resource utilization per container (Figure 26).

&« C A Notsecure | 185.146.161.250:3000/d/4dMaCsRZz/tender-system-containers?orgld =18lrefresh=5s QA W * R ﬁ

88 TeNDER System Containers vr <%

meval | auto v | Job |\ | hose an-

Running containers cnt-production-eny CPU Usage on Node Disk Usage per container
cnt-stage-env 14.0GiB
931 GiB
466 GiB
-_—

0% e e —

Cached Memory per Container (Stacked) Memory Usage per Container (Stacked)

i

1.85 GiB

netdata
— web_app

Sent Network Traffic per Container

—_—— T e
—_— S —

1536
datapusher — db

Figure 26 Recourse allocation per running container

4.3 TeNDER LLS services

TeNDER LLS is mainly composed of several components for gathering and processing
information from heterogeneous sensing devices (i.e. Depth Sensors, wearables, sleep
trackers, position trackers etc.). These components implement several functionalities
including data storage, processing, synchronization, anonymization as well as event detection
and activity recognition. Next, the events are sent to HLS to support useful functionalities for
the TeNDER stakeholders. The first version of the TeNDER platform consists of the following
components:

e HeTRA Server

36 | 99

D5.4 — First version of TeNDER Platform ‘

e HeTRA Client
e Abnormal detection Module
e Local document database (MongoDB)

The LLS components are installed in physical machines on each pilot site (i.e. homes,
rehabilitation rooms, hospitals, etc.). In some cases, the components are executed for a
specific period under the supervision of a health professional (ex. during a set of exercises in
a rehabilitation room), but in some other cases the LLS run in unattended mode as daemon
services. For example, in the home installations, a hard requirement is to monitor the
performance status of the LLS services in an automated manner and generate the appropriate
notification in case of service or network failure. For this reason, during the LLS installation
process, a health-check bash script is installed which runs periodically and checks the
operational status of the LLS components and reports the status to the Prometheus
Pushgateway server (Figure 27). The report data do not contain any personal information (i.e.
user name, IP address etc) but only the installation id and the current status of each
component.

Command:

Powershell.exe

-executionpolicy bypass

-File c:\tender\tnd-install\pushmetric.psl
-Job %siteID% -Instance %copmID%

-Metric %METRIC%

-Value ©

Report Script (pushmetric.ps1):

param(
[parameter (Mandatory=$false)]
[string]$Job,
[string]$Instance,
[string]$Metric,
[string]$value
)
$mt = "$Metric $Value n "Invoke-WebRequest
-Uri http://185.146.161.250:32657/metrics/job/$Job/instance/$Instance
-UseBasicParsing
-Method POST -Body $mt > $null

Pushgateway Metrics
(=] instance="A3CWIN115638" Delete Group

Bhetra_client_ up UNTYPED last pushed: 2021-06-26T06:38:017

Labels Value

instance-"A30WSN115638" N R0 T a5 T 1

Bup_abd_mongo_1 UNTYPED last pushed: 2021-06-26T06:38:06Z

Figure 27 Metrics from SPOMINCICA installation site

Page 37|99

D5.4 — First version of TeNDER Platform

4.4 Alerting

One of the most useful features of the TeNDER monitoring system is the alerting mechanism,
which offers near real-time notifications to the service developers and the administrators of
the infrastructure. Alerting in the Prometheus context is separated into two parts. The first
one has to do with the definition of the alerting rules in the Prometheus server (Figure 28),
and the second one is the actual management of the alert events which it takes place in the
Alertmanager. The Alertmanager receives the alert events from one or many Prometheus
servers and then performs management actions including silencing, inhibition, aggregation
and sending out notifications via methods such as email, on-call notification systems, and chat
platforms as shown in figures 28-35.

&« C A No re | 185.146.161.250:9090/alerts a & * » A
Prometheus t 5

L2 TN - | Firing (5) Show annatations
fete/prometheus/rulesyml > VMs [inactive | fiing G)

2> node_high_cpu_usage_70 (0 active)

2 node_high_memory_usage_70 (2 active)

> node_low_root_filesystem_space_20 (1 active)

» node_root_filesystem_fill_rate_6h (0 active)

[ete/prometheus/rulesyml > containers [firing (5 |

“ ContainerCpullsage (1 active)

description: Container CPU usage is above 88%
VALUE = {{ $value }}
LABELS = {{ $labels }}
summary: Container CPU usage (nome '{{ $labels.name }}* env '{{ Slabels.job }}")

Labels State Active Since Value

e e oot e et =t et e ey T 2021-07-29T135323.3266512822 86.9619821756507
» ContainerMemoryUsage (2 active)

? ContainerDiskUsage (2 active)

Figure 28 Rules status in Prometheus server
The main steps to setting up alerting and notifications are:

e Setup and configure the Alertmanager
e Configure Prometheus to talk to the Alertmanager
e Create alerting rules in Prometheus

Currently, the alerting rules have been organized in two groups, one related to the status of
the servers and another on the running containers.

Some of the already applied rules are the following:

Page 38|99

D5.4 — First version of TeNDER Platform ‘

Servers:

1. CPU utilazation
Description: Server CPU utilazation over 70% for more than 1 minute.

alert: node_high_cpu_usage_78
expr: avg by(job) (rate(netdata_cpu_cpu_percentage_average{dimension="idle"}[1m])) > 7@
for: im
annotations:
description: {{ $labels.job }} on "{{ $labels.job }}' CPU usage is at {{ humanize $value
1%,

summary: CPU alert for container node '{{ $lzbels.job }}

Figure 29 Server CPU utilization rule

2. Memory utilazation
Description: Server memory utilazation over 70% for more than 1 minute.

alert: node_high_memory_usage 7@

expr: 188 / sum by(job) (netdata_system_ram_MiB_average) * sum by(job)
(netdata_system_ram_MiB_average{dimension=~"free|cached"}) < 38

for: 1m

annotations:

description: {{ $labels.job }} memory usage is {{ humanize $valuel}}%.
summary: Memory alert for container node '{{ $labels.job }}'

Figure 30 Server memory utilization rule

3. Storage utilazation
Description: Server storage utilazation over 80% .

alert: node_low_root_filesystem_space_28
expr: 188 / sum by(job) (netdata_disk_space_GiB_average{family="/"}) * sum by(job)
(netdata_disk_space_GiB_average{dimension=~"avail|cached”,family="/"}) < 28
for: 1im
annotations:
description: {{ %$labels.job }} root filesystem space is {{ humanize $valuel}}#.
summary: Root filesystem alert for container node "{{ $labels.job }}’

Figure 31 Server storage utilization 80%

Description: Filesystem is predicted to run out of space within the next 6 hours at
current write rate.

alert: node_root_filesystem_fill rate_6h
expr: predict_linear(netdata_disk_space_GiB_average{dimension=~"avail|cached"”, family="/"}
[1h], 6 * 368@) < @
for: 1h
labels:
severity: critical
annotations:
description: Container node {{ $labels.job }} root filesystem is going to fill up in 6&h.
summary: Disk fill alert for Swarm node '{{ $labels.job }}'

Figure 32 Filesystem run-out prediction rule

Containers:

Page 39|99

D5.4 — First version of TeNDER Platform ‘

1. CPU utilazation
Description: Container CPU usage over 50% for more than 2 minutes.

alert: ContainerCpulsage

expr: (sum by(name, job) (rate(container_cpu_usage_seconds_total{name!=""1[3m])) * 1e@)
> 58

for: Im

labels:

severity: warning
annotations:
description: Container CPU usage is above 88%
VALUE = {{ $value }}
LABELS = {{ $labels }}
summary: Container CPU usage (name "{{ $labels.name }}' env '{{ $labels.job }}")

Figure 33 Container CPU usage rule

2. Memory utilazation
Description: Container memory usage over 1.5GB for more than 2 minutes.

alert: ContainerMemoryUsage

expr: sum by(name, job) (container_memory_rss{name!=""}) » 1.5e+89
for: 2m

labels:

severity: warning
annotations:
description: Container Memory usage is above 1.5GB
VALUE = {{ $value }}
LABELS = {{ $labels }}
summary: Container Memory usage (name '"{{ $labels.name }}' env '{{ $labels.job }}")

Figure 34 Container memory usage rule

3. Storage utilazation
Description: Container disk usage over 2GB for more than 2 minutes.

alert: ContainerDiskUsage

expr: container_fs_usage_bytes{name!=""} > 2e+80
for: 2m

labels:

severity: warning
annotations:
description: Container Disk usage is above 2GB
VALUE = {{ $value }}
LABELS = {{ $labels }}
summary: Container Disk usage (name "{{ %$labels.name }}" env '{{ $labels.job }}")

Figure 35 Container disk usage rule

Page 40|99

D5.4 — First version of TeNDER Platform

5 TeNDER PLATFORM

5.1 Low Level Subsystem

The low-level subsystem (LLS) is mainly composed of several sensing modules that gather
information from the patients. Several subsystems are interoperating at diverse locations (in
each of the TeNDER countries) to collect information from several devices (including depth
sensors, wearables, sleep trackers among others). These modules are divided into several
categories that safely store the information, as described in Figure 36, where the data are
processed, synchronized, and a set of separated solutions to transform the data collected into
the useful functionalities for the TeNDER stakeholders. This module, formally known as
Activity Recognition, is responsible of orchestrating the events detector (i.e. fall down,
festination, etc.).

Affective
L Computing
Wristbond ™
(Activity
inect Azure L Senselib Recognition
Binary = Digital
Interaction
Related -
S Low-Level Subsystems

Figure 36 TeNDER Low Level Subsystem

HeTra subsystem is the core subsystem of the LLS. It enables tracking patient and offers to
the high-level subsystem’s modules the functionality to track specific health characteristics,
from direct health situation information to periodical test results and feedback from
professionals. Moreover, this subsystem gives the opportunity to the users to choose which
health characteristics to track and, also, provides an efficient feedback mechanism that, along
with user activity recognition and, through multimodal fusion, allows for the extraction of
valuable conclusions regarding the patient’s health status.

HeTra is responsible for the data acquisition from the sensors as well as HeTra delivers the
acquired data to the Abnormal Behaviour Detector (ABD) subsystem that is part of TeNDER
LLS and to the Multimodal Fusion (MMF) subsystem which is part of the HLS.

HeTra does not only deliver the raw data as acquired from the sensors but it also provides
techniques in order to extract features that will be useful for subsequent analysis. This
analysis is performed in SENSELib. This library includes sensor data acquisition tools as well
as specific algorithms for data processing (tracking, skeleton smoothing, dimensionality
reduction etc.).

41| 99

D5.4 — First version of TeNDER Platform ‘

Data Sensor data Data
—}-
acquisition processing

h 4
HeTra] Client Server

Abnormal
behavior

detection

subsystem

Multimodal
fusion
subsystemn

Figure 37 SenselLib schematic description

A client of HeTra runs on the other subsystems of TeNDER (ABD and MMF subsystems)
through which the communication with HeTra will take place.

SENSELib is a part of the TeNDER’s open API system and is used to develop HeTra subsystem.
This library provides mainly two types of functionalities, i.e., acquisition and processing
(Figure 37) based on the following modules:

e Multi-Sensorial Capturing module

e Digital Interaction Module

e Abnormal Behaviour Detection module
e Affective Computing module

e Localization tracking module

e Kinect Azure tracking module

5.1.1 HeTRA server and client (CERTH)
Description

From a front-end perspective, the HeTra tool is comprised of two separate applications the
HeTra client and the HeTra server, each of them having its own GUI. Using these GUIs, the
user may check the connectivity with the sensors, select the type of data to be acquired (e.g.
in the case of the Kinect v02 and the Azure Kinect sensor RGB, Depth and IR frames could be
captured). In addition, HeTra enables the acquired raw data from the sensors to be stored
locally in a Mongo database instance. For example, by clicking on the button “Connect and

Page 42|99

D5.4 — First version of TeNDER Platform

check Devices” HeTra server looks for a response from the selected devices. Then, once
response is taken, the user can click on the “Begin Acquisition” button to start acquiring data
from the sensors. Additionally, the user may click on the “Save to DB” button to save sensors’
raw data to the MongoDB. Furthermore, in the cases in which data acquisition is deployed via
secure API calls (Localization, Sleep Sensor, Wristband sensors), using the HeTra Server GUI,
the user may fill in the specific URLs which contain the sensor IDs from which he/she needs
to acquire data from.

B ' Hetra Sensors Client — O 4

Info | Kinect | AzureKinect | Localization | SleepSensor | Wristband | VoiceTracker

= Waiting for Server connection... e

Figure 38 HeTra Client GUI.

Page 43|99

D5.4 — First version of TeNDER Platform

% Hetra Server

Addaonal Fusctionaltes

:‘ Connect and Check Devices

i

|
@
|

idie

Figure 39 HeTra Server GUI.

From a back-end perspective, the HeTra tool provides the ability to collect data from cameras
(Kinectv02, Azure Kinect), collect raw data from sensors (Localization, Sleep Sensor,
Wristband) via secure APl calls and additionally gather data from microphones (Voice
Tracker). All these collections can be orchestrated and synchronized through HeTra and may

be further exploited from the other modules of the TeNDER ecosystem maintaining the
privacy of the users.

Software Dependencies

e Windows 10 (64 bit)
Pro, Enterprise, Education (Build 17134 or higher), Home (version 1903 or higher)
e Python3.7.3
e Kinect Runtime 2.0
e PyAudio-0.2.11

Build — Deployment

msbuild HeTraClient.sln
msbuild HeTraServer.sln

Tests
Table 5 Senselib test
Test name Senselib
Test Purpose Check the methods responsible for acquiring data from different

sensors as well as methods for processing the acquired data.
Pre-test conditions Run the test in the solution in Visual Studio 2019

44 | 99

D5.4 — First version of TeNDER Platform

Test Tool

VSTest.Console.exe (Visual Studio 2019)

Test description

Check Senselib project.

Test Verdict

The library of Senselib is functional

Command:

vstest.console.exe Test_Sencelib.dll

Table 6 Client test

Test name

HeTraClient

Test Purpose

Check the visualization and communication between of the sensors
data with the main server.

Pre-test conditions

Run the test in the solution in Visual Studio 2019

Test Tool

VSTest.Console.exe (Visual Studio 2019)

Test description

Check HeTra_Client project.

Test Verdict

HetraClient.exe is functional

Command:

vstest.console.exe Test Client.dll

Table 7 Server test

Test name

HeTra Server

Test Purpose

Check the collection of the data and the performing tasks of
consultation to other instances/apps to ingest the data into the
TeNDER local storage.

Pre-test conditions

Run the test in the solution in Visual Studio 2019

Test Tool

VSTest.Console.exe (Visual Studio 2019)

Test description

Check HeTra_Server project.

Test Verdict

HetraServer.exe is functional

Command:

vstest.console.exe Test_Server.dll

We can conduct all the tests from the Visual Studio IDE during the development process. In
the following figures, the execution and the test results are depicted.

45| 99

D5.4 — First version of TeNDER Platform

D) File Edit View Git Project Build Debug

S S @

[T Error List

Show output from: Package Manager

saomos eieq [

Test Explorer

- | Debug -

[» Run Al Tests Cri+R A

Repeat Last Run Crl«R L
Debug All Tests Ctrl+R, Ctri+A
Debug Last Run tri+R, D
Configure Run Settings »
Processor Architecture for AnyCPU Projects »
&a Test Explorer Ctrl+E, T
43 Options..

Figure 40 Unit Tests execution

b r-cold:]e:lod -t s-

Test ~
4 @ Test Client (1)
4 @ Test_Client (1)
4 & UnitTest1 (1)
& TestMethod1
4 @ Test Senselib (1)
4 @ Test_Senselib (1)
4 & UnitTest1 (1)
@ TestMethod1
4 @ Test Server (1)
4 @ Test_Server (1)
4 & UnitTest1 (1)
& TestMethod1

Duration
2ms
2ms
2ms
2ms
2ms
2ms
2ms
2ms
2ms
2ms
2ms

2ms

Traits Error Message

Figure 41 Unit Test execution results

5.1.2 Abnormal detection Module (UPM)

Description

This module comprises all the functionalities of interest for the patients, family, caregivers
and health professionals for the care delivery. The module is mainly composed of two types
of functionalities: The “real time events” and the “non-real time events”. The former group
contains those events that require immediate attention including high Heart Rate, the fall
down, patient leaving the house among other events. The latter group contains the non-real

time events that will be reported in periodic messages.

\ 4

Test Analyze Tools Extensions Window Help Search (Ctri+Q

I HeTra

rox

Search Test Explorer P~

Group Summary
Test_Senselib
Tests in group: 1
(@® Total Duration: 2 ms
Outcomes
@ 1 Passed

Page 46|99

D5.4 - First version of TeNDER Platform

Container 1: . .
Wiistband Container 2: Container &
MongoDB Re-ID Depth Sensor

Reocgnition

Container Summarisat

Docker-Compose

Figure 42 Abnormal detection module

In order to boost the modularity of the system, the CI/CD approach was adopted in TeNDER.
It implies the separation into containers. These containers will oversee the implementation
of functionalities associated to a particular sensor as described in Figure 42. Therefore, there
is @ main “orchestrator container” which extracts the information from the local mongo
database. This library enables the access to the data. A set of functionalities containerised
including:

— The depth sensor container. Implemented in Python 2.7, using Keras framework and
the Microsoft CNTK Deep Learning library. This container is connected to the mongo
via pymongo library and the central node.

— The abd_band container. Implemented in Python 3.6, includes the functionalities for
the Fitbit-band, the microphone, the sleep sensor among others. It relies on
Tensorflow 2.0.

Software Dependences
e Docker (ver. 19.03.8)
e docker-compose (ver. 1.26.2)

Build — Deployment

Build the container images:

docker build -f tnd-ab-dtc -t tenderdev/abd_band:latest .
docker build -f tnd-ab-dtc2 -t tenderdev/abd_kinect:latest .

Instantiate the service:

docker-compose up -d

Tests

The components and the provided endpoints are tested after the deployment phase.

47| 99

D5.4 - First version of TeNDER Platform

Table 8 Mongo connectivity test.

Test name ABD test
Test Purpose Check ABD accesses to database and RabittMQ queues
Pre-test conditions Docker installed
Test Tool pyTest library
Test description 1. Receive a 200 code from database query
2. Post successfully test message into RabittMQ
Test Verdict ABD is correctly connected and running
Command:

docker exec -t tnd-mongo-rest_mongo_api_1 sh -c "pytest tests”

= s eSS = —=——=--—— " Rtc SIS e SShlONESIF AR S IE ==—==========—c========—=—=————————2
platform linux -- Python 3.7.3, pytest-5.4.3, py-1.9.0, pluggy-0.13.1

cachedir: tests

rootdir: tests

collected 2 items

test_mongo.py [100%]
test_broker.py [100%]

5.2 High Level Subsystem

5.2.1 Proxy and Authorization server (MAG)
Description

TeNDER secured gateway provides secure access and SSO service to all users and systems to
TeNDER ecosystem. Currently, the implementation of the TeNDER gateway consists of a
reverse proxy (Traefik [20]) and an authentication/authorization server (Keycloack [21]). The
proxy server implements load balancing and handles the HTTPs certificates and the
authorization server guarantees that each user will have access only in the service and data
that are related to his account and role. Furthermore, this approach can be easily integrated
with several infrastructure components i.e. Docker, Swarm Kubernetes, etc.

48 | 99

D5.4 — First version of TeNDER Platform ‘

docker
o

>
compose
o

#r keycloak
Identityand Access
Management Server

docker
2,
é}g;) compose

Keycloack TeNDER Service 1

Idm Network

treefik

Reverse Proxy
Edge Router

% docker
Jg?) compose

KeycloacKJ TeNDER Service N

e e
e® ©

TeNDER Users
Figure 43 TeNDER secure proxy server
Software Dependences

e Docker (ver. 19.03.8)

e docker-compose (ver. 1.26.2)

e Postgres DB (ver. 11.2)

e Existence of two docker networks (idm_net, data_net)

Build — Deployment

Build the container images:

docker build -f auth-server/Dockerfile -t tender-auth-server .

Instantiate the service:

apk add --no-cache --upgrade bash
./create_networks.sh
docker-compose -f auth-server/docker-compose.yaml up -d

Access endpoints:

The administrator of the platform can use the GUI (Figure 44) interface of Keycloak server in
order change the current configuration either by modifying the pre-loaded realms or by
creating new ones. The GUI is available on the following endpoint:

https://auth-stage-tender.maggiolicloud.it/auth/

Page 49|99

D5.4 — First version of TeNDER Platform

<« c & auth-prod-tender.maggiolicloud.it/auth/admin/master/console/#/realms/TeNDER/clients w R m

Clients
) Lookup
Realm Q Create
S ClientID Enabled Base URL e
e Clients https://auth-prod-tender.maggiolidloud.it/auth/realms/TeNDER/account/ Edit Export Delete
Client Scopes u Edit Export Deless

Roles

Identity

Providers

User

[T T

Federation

dl s ala a2 a2

security-admin-console

maggiolicloud.it/auth/admin/TeNDER/consolef

Authentication

Groups
Users

Events
Import

Export

Figure 44 Clients on TeNDER realm.

Also, the proxy server offers web GUI (Figure 45) which provides the operational status of the
server regarding the active backends/frontend endpoints and the health status of the

microservices that are exposed to the public network. These dashboards are available on the
following endpoints:

http://stage-tender.maggiolicloud.it:8081/dashboard/

&« C A Notsecure | prod-tender.maggiolicloud.it8081/dashboard/status Q % *» ﬂ
2
=

Time 5 months Total Code Count 6114646 2 months

2218 ms | oo 0 !

Average Response Time (ps) Total Status Code Count

Figure 45 Traefik health dashboard

50 | 99

D5.4 — First version of TeNDER Platform . Te N D E R

& A Notsecure | prod-tender.maggiolicloud.it8081/dashboard/ a & * N

c
@ PROVIDERS ~ HEALTH V1.7.4 / MAROILLES ~ DOCUMENTATION
etk

Q, Filter by name orid .

docker

[} FrRONTENDS

@&4 frontend-Host-api-db-prod-tender-maggiolicloud-it-2

== backend-backend-device-api
=

|.
2
g
g

v
Main Details Main Details
Route Rule Server Weight
Host:api-db-prod-tender.maggiolicloud. it
http:/¥172.20.0.17:8000 1
S] -
Backend B8 backend-keycloak-gatekeeper-mongo-rest B b ackend-ckan-ckan
]
Main Details
.:e:. frontend-Host-auth-prod-tender-maggiolicloud-it-6
Server Wisight
Main Details
http://172.20.0.11:5000 1

Route Rule

Host: auth-prod-tender .maggiolicloud. it

Entry Points m @

=5 backend-datapusher-ckan
-

= Main Details
Backend & backend-keycloak-auth-server
Server Wieight
n
€} frontend-Host-datapusher-ckan-14 httpi//172.20.08:8800 1
Main Details
-—

Route Rule &= backend-db-ckan

Host:datapusher. ckan Main Details

Entry Points [o) rites | Server Weight

Backend 8 backend-datapusher-ckan http/#172.20.0.9:5432 1

Figure 46 Traefik backend services

CI/CD Pipeline

image:
name: docker/compose:latest
entrypoint: ["/bin/sh", "-c"
variables:
GIT_STRATEGY: clone
WORK_DIR: ${CI_PROJECT_NAME}
BRANCH: ${CI_COMMIT_REF_NAME}
REGISTRY: tender-registry:5000
SHARED_PATH: /builds/$CI_PROJECT_PATH
stages:
- build
deploy
- tests
- create_p_images
- list_services
build_images:
stage: build
script:
- docker build -f auth-server/Dockerfile -t tender-auth-server .
- docker tag tender-auth-server $REGISTRY/tender-auth-server:sta
- docker push $REGISTRY/tender-auth-server:sta
tags:
- stage

Page 51|99

D5.4 — First version of TeNDER Platform

deploy sec_gw:
stage: deploy
script:
- apk add --no-cache --upgrade bash
- ./create_networks.sh
- docker-compose -f auth-server/docker-compose.yaml down
- docker-compose -f auth-server/docker-compose.yaml up -d
tags:
- stage
tests:
stage: unit_tests
script:
- tests/test-containers-status.sh
- tests/test-realm.sh
- tests/test-endpoints.sh
tags:
- stage
create_prod_images:
stage: create_p_images
script:
- docker tag $REGISTRY/tender-auth-server:sta $REGISTRY/tender-auth-
server:prod
- docker push $REGISTRY/tender-auth-server:prod
when: manual
tags:
- stage
list_apps:
stage: list_services
script:
- docker network 1s
- docker-compose -f auth-server/docker-compose.yaml ps
tags:
- stage

Tests

The provided APIs by the servers and their configuration are tested after the deployment
phase.

Table 9 Test containers status

Test name Application server connectivity

Test Purpose Check the operational status of the containers consisting of the
proxy and authorization service.

Pre-test conditions The proxy and authorization service running on stage environment

Test Tool Bash Automated Testing System (BATS)

Test description 1. Retrieve operational status of keyckoak, keycloak db and
traefik containers.
2. Check if all containers are in running state

Test Verdict Service has been deployed successfully

Command:

cd ./tests
./test-containers-status.sh

52|99

D5.4 — First version of TeNDER Platform

Output:

3 tests, @ failures

v check keycloak container
v check keycloak database container
v check traefik container

Table 10 Test Keycloak configuration

Test name

Application server connectivity

Test Purpose

Check in the TeNDER realm has been loaded in keycloak server.

Pre-test conditions

The proxy and authorization service running on stage environment

Test Tool

Bash Automated Testing System (BATS)

Test description

1. Retrieve operational relams from keyckoak api
2. Check if TeNDER realm is configured

Test Verdict

Keycloak has ben configured correctly

Command:

cd ./tests
./ test-realm.sh

Output:

v check TeNDER Realm

1 test, @ failures

Table 11 Test Proxy and Authorization servers endpoints

Test name

Application server connectivity

Test Purpose

Check the endpoints of keycloak and traefik servers

Pre-test conditions

The proxy and authorization service running on stage environment

Test Tool

Bash Automated Testing System (BATS)

Test description

1. Perform http GET request to the https://auth-stage-
tender.maggiolicloud.it/auth/

2. Check HTTP response code (200)

3. Perform http GET request to the http://stage-
tender.maggiolicloud.it:8081/dashboard/

4. Check HTTP response code (200)

Test Verdict

HTTP endpoints are available

Command:

cd ./tests
./test-endpoints.sh

Page 53|99

D5.4 - First version of TeNDER Platform

Output:
v check keycloak endpoint
v check traefik endpoint

2 tests, @ failures

5.2.2 Message broker and Consumer
Description

The collected data from the sensors are processed and then sent to the HAPI FHIR server,
where a specific data structure and fields are needed to correctly store the information on it.
To communicate with the HAPI FHIR server, there is an internal APl which provides the
necessary endpoints to efficiently read and write data. In order to optimize the workflow from
the sensor’s data collection to the HAPI FHIR server, a message broker was added and
configured through the usage of rabbitMQ. By having a message broker, all the collected data,
are handled, and published to specific topics where, depending on the rules implemented,
hold them in queues that are consumed by authorized receivers (credentials are needed to
have permission to get the messages).

As a receiver, there is a consumer, developed in Java, which is responsible for receiving the
messages, serializing them into FHIR HL7 patterns and storing them in the server. Specific
gueues were created to help identify different messages which need specific serialization.

Important to mention that this implementation is fully integrated with the central
Authorization and Authentication server of the platform.

Software Dependences

Message broker:
e RabbitMQ3.7.4

Consumer:
e Maven3.6.3
e JavalDK 11

Build — Deployment

Message broker:
Build the container images:

docker build --no-cache=true -t tnd-broker .
Instantiate the service:
docker run -d -p 8585:15671 -p 41757:5672 -p 51757:5671 -p 9419:9419 --name tnd-

broker -h tender-rmgq $REGISTRY/tnd-broker:sta

Management access endpoint (Accessible from internal network only):

54|99

D5.4 — First version of TeNDER Platform ‘

http://stage-tender.maggiolicloud.it:8585/

Consumer:

Build the container images:

docker build -t $REGISTRY/tender-consumer-ubw:prod -f dockerfile/prod/Dockerfile
--build-arg TZ=UTC

Instantiate the service:

docker-compose -f workers/docker-compose.yml up -d

CI/CD Pipeline

Message broker:

image: docker
variables:
WORK_DIR: ${CI_PROJECT NAME}
BRANCH: ${CI_COMMIT REF_NAME}
REGISTRY: tender-registry:5000
before_script:
- docker info
stages:
- build
- test
deploy
- list_services
- create_p_images
build_project:
stage: build
script:
- docker build --no-cache=true -t tnd-broker .
- docker tag tnd-broker $REGISTRY/tnd-broker:sta
- docker push $REGISTRY/tnd-broker:sta
tags:
- stage
deploy_project:
stage: deploy
script:
- docker ps -a -q --filter "name=tnd-broker" | grep -q . && docker stop
tnd-broker && docker rm -fv tnd-broker
- docker run -d -p 8585:15671 -p 41757:5672 -p 51757:5671 -p 9419:9419 --
name tnd-broker -h tender-rmgq $REGISTRY/tnd-broker:sta
- sleep 10
tags:
- stage
list_apps:
stage: list_services
script:
- docker logs tnd-broker
- docker logs tnd-dt-consumer
tags:
- stage
tests:
stage: test
script:
- tests/message_execution_status.sh
- tests/int-test-fir.sh
tags:
- stage
create_prod_images:

Page 55]99

D5.4 — First version of TeNDER Platform

stage: create_p_images

script:
- docker tag $REGISTRY/tnd-broker:sta $REGISTRY/tnd-broker:prod
- docker push $REGISTRY/tnd-broker:prod

when: manual

tags:
- stage

Consumer:

image:
name: docker/compose:1.21.2
entrypoint: ["/bin/sh", "-c"
variables:
GIT_STRATEGY: clone
REGISTRY: tender-registry:5000
stages:
- build
deploy
- test
- list_services
create_p_images
build_images:
only:
refs:
- master
variables:
- $TENDER
stage: build
script:
- echo "Build consumer image"
- docker build --no-cache -t tender-consumer-ubw -f
dockerfile/stage/Dockerfile . --build-arg TZ=UTC
- docker tag tender-consumer-ubw $REGISTRY/tender-consumer-ubw:sta
- docker push $REGISTRY/tender-consumer-ubw:sta
tags:
- stage
deploy_workers:
only:
refs:
- master
variables:
- $TENDER
stage: deploy
script:
- echo "Remove consumer container"
- docker stop consumer-rabbit || true
- docker rm consumer-rabbit || true
- echo "Recreate container"
- docker-compose -f docker-compose-stage.yml up -d --force-recreate
tags:
- stage
list_apps:
only:
refs:
- master
variables:
- $TENDER
stage: list_services
script:
- docker logs tender-consumer-ubw
- docker ps
tags:
- stage

Page 56|99

D5.4 - First version of TeNDER Platform

tests:
stage: test
script:

- tests/consumer_execution_status.sh
- tests/int-test-fir.sh

tags:
- stage

create_prod_images:

only:
refs:
- master
variables:
- $TENDER

stage: create_p_images

script:

- echo "Remove old consumer prod image"

- docker rmi $REGISTRY/tender-consumer-ubw:prod || true

- echo "Remove old scheduler prod image MISSING"

- echo "Build and push new consumer prod image"

- docker build -t $REGISTRY/tender-consumer-ubw:prod -f
dockerfile/prod/Dockerfile . --build-arg TZ=UTC

- docker push $REGISTRY/tender-consumer-ubw:prod

when: manual
tags:
- stage

Tests

Both components are tested together to test the workflow from the publish to the receive

and data handling.

Table 13 - Test Message Broker and Consumer’s Execution and Workflow

Test name

Application server connectivity

Test Purpose

Check the execution of the rabbitMQ instance and if its topics and
queues are correctly created. If so, verify if it's ready to store all the
data published and, when a request to receive the data is made, the
information is pop to the consumer that will handle the information
and store it in the HAPI FHIR server.

Pre-test conditions

The rabbitMQ running in a local or cloud environment. Deploy
consumer in a local or cloud environment. Have HAPI FHIR server
working in a local or cloud environment.

Test Tool

Shell Script (sh)

Test description

1. In case of TeNDER staging environment, perform a curl
command to the IP and Port where the message broker is
instantiated;

2. Publish data to the message broker;

3. Check if information was stored in HAPI FHIR server.

Test Verdict

Message broker and consumer are running and working properly

Command:

bash tests/consumer_execution_status.sh

Output:

57|99

D5.4 — First version of TeNDER Platform

HTTP/1.1 200 OK

content-length: 1391

content-type: text/html

date: Thu, 05 Aug 2021 18:59:30 GMT

etag: "804493663"

last-modified: Wed, ©2 Jun 2021 10:21:22 GMT
server: Cowboy

Command:
| bash int-test-fir.sh

from HAPI FHIR

Figure 42 - Publish/Receive and HAPI FHIR’s data storage check.

5.2.3 Electronic Health Record server
Description

For the electronic health record, an instance of the HAPI FHIR server was integrated. It
provides a full implementation of the HL7 FHIR standard for healthcare interoperability,
designed to facilitate the flexible integration of FHIR resources in applications/systems,
allowing different clients to connect.

Regarding server interaction, the FHIR standard implementation provides an HTTP API to
enable CRUD operations (create, delete, read and update) on the database, supporting
different deployment schemes and relational databases.

Page 58|99

D5.4 — First version of TeNDER Platform

For the TeNDER project, the server was deployed with the standard tools, having a
PostgreSQL instance integrated as an open-source object-relational database system and an
APl interaction using the structure already defined for each resource [22].

Concerning authentication, a new layer was implemented in the server to verify the request's
authenticity. Since the service that manages the authentication is Keycloak, which is used on
every TeNDER component that needs authorization management, a token must be used to
validate them. The token is generated in the login phase through Keycloak's APl and returned
to the final user who will use it in every request made to the HAPI FHIR as an Authorization
token.

Software Dependencies

e Maven 3.6.3
e JavalJDK 11
e Tomcat9

e JavalJRE 11

Build — Deployment

Build the container images

|docker build -t $REGISTRY/hapi-fhir-jpaserver:prod -f dockerfile/prod/Dockerfile

Instantiate the service

|docker—compose -f hapi-fhir/docker-compose.yml up -d

Access endpoint

|https://hapi—prod—tender.maggiolicloud.it/hapi—fhir—jpaserver/Fhir/<resource>

CI/CD Pipeline

image:

name: docker/compose:1.21.2

entrypoint: ["/bin/sh", "-c"
variables:

GIT_STRATEGY: clone

WORK_DIR: ${CI_PROJECT_NAME}

BRANCH: ${CI_COMMIT_REF_NAME}

REGISTRY: tender-registry:5000

SHARED_PATH: /builds/$CI_PROJECT_PATH
stages:

- build

- deploy

- list_services

- int-test

- create_p_images
build_images:

only:

refs:
- master

Page 59|99

https://hapi-prod-tender.maggiolicloud.it/hapi-fhir-jpaserver/fhir/%3cresource

D5.4 - First version of TeNDER Platform

stage: build
script:
- docker build -t hapi-fhir-jpaserver -f dockerfile/stage/Dockerfile .
- docker tag hapi-fhir-jpaserver $REGISTRY/hapi-fhir-jpaserver:sta
- docker push $REGISTRY/hapi-fhir-jpaserver:sta
tags:
- stage
deploy hapi_fhir:
only:
refs:
- master
stage: deploy
script:
- docker-compose -f docker-compose-stage.yml up -d --build hapi-fhir-
jpaserver-start
tags:
- stage
list_apps:
only:
refs:
- master
stage: list_services
script:
- docker-compose logs
- docker-compose ps
tags:
- stage
run_test:
stage: int-test
script:
- apk update
- apk add curl
- curl -s -X POST -F token=0f2c5b4019231cd48f49fe229746f2 -F ref=master -
F "variables[TEST_SCRIPT]=int-test-hfir.sh"
https://tendergitlab.maggiolicloud.it/api/v4/projects/32/trigger/pipeline
tags:
- stage
create_prod_images:
only:
refs:
- master
stage: create_p_images
script:
- docker rmi $REGISTRY/hapi-fhir-jpaserver:prod || true
- docker build -t $REGISTRY/hapi-fhir-jpaserver:prod -f
dockerfile/prod/Dockerfile .
- docker push $REGISTRY/hapi-fhir-jpaserver:prod
when: manual
tags:
- stage

Tests

The HAPI FHIR already provides internal tests in every package used every time the image is
built. It assures the correct integration of the packages with valid versions and allows the
inclusion of custom tests.

For the TeNDER case, were added interceptors and filters to increase the necessary logic into
specific requests before their processing and guarantee the correct workflow.

60 | 99

https://tendergitlab.maggiolicloud.it/api/v4/projects/32/trigger/pipeline

D5.4 — First version of TeNDER Platform

Table 13 - HAPI FHIR HTTP API connectivity test

Test name

Test snapshots versions and usability

Test Purpose

Each HAPI FHIR’s package should be tested
to always have the correct versions and to
avoid package bugs in deployment phase

Pre-test conditions

A local or cloud environment with mvn
(Maven) installed

Test Tool

Maven

Test description

1. Goto each HAPI FHIR’s package
2. Runinternal tests
3. Wait until all tests passed

Test Verdict

All external packages are updated and
working properly

Command:

| mvn -P ALLMODULES,NOPARALLEL clean install

Output:

61|99

D5.4 — First version of TeNDER Platform

Reactor

Summary for HAPI-FHIR 5.4.0-

Figure 40 TeNDER’s EHR unit tests

Table 14 HAPI FHIR Interceptors Tests

Test name

Test snapshots versions and usability

Test Purpose

Some requests made to HAPI FHIR are
intercepted to add more logic and combine
information with other microservices

Pre-test conditions

A local or cloud environment with HAPI FHIR
running

Test Tool

Shell Script (sh)

Page 62]99

D5.4 - First version of TeNDER Platform

Test description 1. Simulate calls with interceptors
2. Assert positive responses

3. Wait until all tests passed

Test Verdict All interceptors are working properly

Command:
bash int-test.sh

SWFCeFBRV:
C 101J0dHRwczovL2F1dGg UtdGVuZGVyLm1hZ2dpb2xp!
bmFnZW11bnQiLCIhY2Ny Y1 I6ImQuM] BMI4LWYOMZMENDg3Yy1hOTYLTLKN20yZ] 9506052 1sInRScCIGTKILYXILcils X T6MCwic2Vzc2lvb
VLWFKMTUtNDB UaM sImFj ciI611EiLCIhbGxvd2VKLW9yadpbnHi0lsiKiIsInhedHBz01 3 b p AGLy95b2ZNhbGhvC3060D!
Y2N M oW1 uTiwib2ZmbGluZvahY2N1c3Mil CI1bWFfYXVe: XphdGlvbildfsy Vzb3VyY2VFYWNjZXNZIjp7In] 195 7XM101s1dml 1dy1pZGYudGlees:
GV J NZG1pbiIsImNyZWFi bG11bnQiLCItYWs! 3 FsbXMiLCI2aWV3LWF1dGl
k WFUYWd1LXO 1ywxtTiwidml Ldy1ldmyudHMil 2aWV3L widmlldy1 1L6YXRpb24iLCITYWShZ2Ut
Swi YN b y UEYWN]b3VudCTsIn1hbmFnZS1hY2NvdWSLWxpbmt 2T iwidml LdylwcmOmaxLT1 195w
6ZnFsc2UsT ; 9pZCI6) / bINRLbAR1cilhZG1pbilsIn DV YN dWIhX2F 1d)
61pbilsInZhbilseVouYWILL) g XNXv_nPL-g
J-7r-10WN YaQNYNdM_rGYDZ9n ks _9 3 6 Z5UsnbNb

DOCTOR creat
* CREATE PATIENT

DEVICE POS c 2
DEVICE MIC created: 2778
* POST DATA
* Retrieve DATA from remote MongoDB
ABD data per USER
JCCESS (1)
abilitation data

* DELETE ENTITIES

DEVICE SLEEP 27781:

DEVICE BAND 27782 fully deleted 1 resource(s) in 7ms

DEVICE KINECT 27783: fully deleted 1 resource(s) in 8ms

DEVICE POS 2778 ully deleted 1 in 7ms

DEVICE MIC 27785: ully deleted 1 s} in 7ms
77: Successfully deleted 1 resource(s) in 9ms
Successfully deleted 1 resource

DOCTOR 27775: Successfully deleted 1 resource(s) in 5ms

Figure 41 HAPI FHIR Interceptors Tests.

5.2.4 Remote Document DB
Description

One of the databases which consists of the TeNDER platform is a document-based mongo DB.
In this DB anonymized data coming from the LLS, through the message broker, are stored to
be further analysed by TeNDER services. To enhance the secure interconnection between the
DB and the rest of the services regardless the programming language and the technology
which are used from the rest services an HTTP REST API has been developed. This API can be
accessed directly from the internal services of the platform via an internal private network.
In case which TeNDER platform is deployed in different servers the same API is provided over
HTTPS and it is fully integrated with central Authorization and Authentication server of the
platform.

Software Dependences

e django 3.0.4

e mongoengine 0.19.1

e django-rest-framework-mongoengine 3.4.1
e pymongo 3.10.1

63 | 99

D5.4 — First version of TeNDER Platform

Build — Deployment

Build the container images:

docker build -f mongo_rest/Dockerfile -t tender-mongo_api .
docker build -f nginx/Dockerfile -t tender-mongo_api_fsrv .

Instantiate the service:

docker-compose up -d

Access endpoint:

https://api-db-stage-tender.maggiolicloud.it/api/v1l/docs/

CI/CD Pipeline

image:

name: docker/compose:latest

entrypoint: ["/bin/sh", "-c"
variables:

GIT_STRATEGY: clone

WORK_DIR: ${CI_PROJECT_NAME}

BRANCH: ${CI_COMMIT_REF_NAME}

REGISTRY: tender-registry:5000

SHARED_PATH: /builds/$CI_PROJECT_PATH
before_script:

- docker --version

- docker-compose --version
stages:

- build

- deploy

- unt-test

- int-test

- create_p_images
build_images:

stage: build
script:

deploy_mongo_api:
stage: deploy
script:
- docker-compose down
- docker-compose up -d
tags:
- stage
unit_tests:
stage: unt-test
script:

api.tests.DBConTestCase"

api.tests.ApisTestCase"

api:sta
- docker push $REGISTRY/tender-mongo_api:sta
- docker push $REGISTRY/tender-mongo_api_fsrv:sta
- docker push $REGISTRY/tender-gtkeeper-mongo-api:sta
tags:
- stage

- docker build -f mongo_rest/Dockerfile -t tender-mongo_api .

- docker build -f nginx/Dockerfile -t tender-mongo_api_fsrv .

- docker build -f nginx/Dockerfile-gk -t tender-gtkeeper-mongo-api .

- docker tag tender-mongo_api $REGISTRY/tender-mongo_api:sta

- docker tag tender-mongo_api_fsrv $REGISTRY/tender-mongo_api_fsrv:sta
- docker tag tender-gtkeeper-mongo-api $REGISTRY/tender-gtkeeper-mongo-

- docker exec -t tnd-mongo-rest_mongo_api_1 sh -c "python3 manage.py test

- docker exec -t tnd-mongo-rest_mongo_api_1 sh -c "python3 manage.py test

Page 64|99

D5.4 — First version of TeNDER Platform

tags:
- stage
run_test:
stage: int-test
script:
- apk add curl
- curl -s -X POST -F token=0f2c5b4019231cd48f49fe229746f2 -F ref=master -
F "variables[TEST_SCRIPT]=int-test.sh"
https://tendergitlab.maggiolicloud.it/api/v4/projects/32/trigger/pipeline
tags:
- stage
create_prod_images:
stage: create_p_images
script:
- docker tag $REGISTRY/tender-mongo_api:sta $REGISTRY/tender-mongo_api:prod
- docker tag $REGISTRY/tender-mongo_api_fsrv:sta $REGISTRY/tender-
mongo_api_fsrv:prod
- docker tag $REGISTRY/tender-gtkeeper-mongo-api:sta $REGISTRY/tender-
gtkeeper-mongo-api:prod
- docker push $REGISTRY/tender-mongo_api:prod
- docker push $REGISTRY/tender-mongo_api_fsrv:prod
- docker push $REGISTRY/tender-gtkeeper-mongo-api:prod
when: manual
tags:
- stage

Tests

All the components and their endpoints are tested during the deployment phase in the stage
environment.

Table 12 Mongo HTTP API connectivity test.

Test name Application server connectivity

Test Purpose Check connectivity between application server and MongoDB
Pre-test conditions | The MongoDB REST service running on stage environment
Test Tool django.test

Test description 3. Create a new record via HTTP POST

4. Retrieve the data based on patient ID

5. Check if the posted and retrieved data are equal

Test Verdict Application server has access to Mongo

Command:

docker exec -t tnd-mongo-rest_mongo_api_1 sh -c "python3 manage.py test
api.tests.DBConTestCase”

Output:

Ran 1 test in 0.012s

OK

Table 13 Mongo HTTP API Rehabilitation test.
Test name Rehabilitation service API
Test Purpose Check the API for Rehabilitation data

65 | 99

D5.4 — First version of TeNDER Platform

Pre-test conditions

The MongoDB REST service running on stage environment

Test Tool

django.test

Test description

1. Retrieve data from
/api/vl/summarization/rehabilitation/

2. Check HTTP status code (200 OK)

Test Verdict

API is functional

Table 14 Mongo HTTP APl smart band test.

Test name

Smart-band service API

Test Purpose

Check the API for smart-band data

Pre-test conditions

The MongoDB REST service running on stage environment

Test Tool

django.test

Test description

1. Retrieve data from
/api/vl/summarization/ band/

2. Check HTTP status code (200 OK)

Test Verdict

APl is functional

Table 15 Mongo HTTP API ABD test.

Test name

Abnormal detection service (ABD)

Test Purpose

Check the API for ADB data

Pre-test conditions

The MongoDB REST service running on stage environment

Test Tool

django.test

Test description

1. Retrieve data from
/api/vl/summarization/adb/

2. Check HTTP status code (200 OK)

Test Verdict

API is functional

Command:

docker exec -t tnd-mongo-rest_mongo_api_1 sh -c
api.tests.ApisTestCase"

python3 manage.py test

Output:

Ran 10 tests in 0.036s

oK
5.2.5 Web GUI (UBI)
Description

The TeNDER project, besides the mobile application developed for patients and caregivers,
had to provide an efficient and interactive way for administrators and health professionals to
interact with the system. Since these users will mostly manage resources, the solution was
the development of a web application. Each user has his private area and access only to the
information that his role allows.

66 | 99

D5.4 — First version of TeNDER Platform

Until now, there are two developed interfaces: the administrator and health professional
interface. The administrator interface is structured to provide the needed functionalities for
the correct management of its organization, users, and devices. Each administrator is related
to an organization, and all the users and devices created are managed by him. Besides
creating users and devices, the administrator can: edit, delete, and change their status (active
or deactivate); create relations between users; filter and visualize quantitative information;
check the devices usage timespan and other helpful measures.

Regarding the health professional interface, its focus is on the user patients. Each health
professional has his patients and can be accessed individually in the web application. The
details page of each patient provides an organized custom dashboard, where the user can
monitor and follow the patient’s collected information from its general information to sleep
tracker, localization tracker, and many others.

Software Dependences

e Docker

e NodelS

e Browser with Javascript support
e NpmorYarn

Build — Deployment

Build the container images:

docker build --no-cache -t $REGISTRY/tender-web-app-ubw:prod -f
deployment/dockerfile/production/Dockerfile . --build-arg TZ=UTC

Instantiate the service:
|docker—compose -f webapp/docker-compose.yml up -d

Access endpoint:
|https://prod—tender.maggiolicloud.it/

ClI/CD Pipeline

image:
name: docker/compose:1.21.2
entrypoint: ["/bin/sh", "-c"

variables:
GIT_STRATEGY: clone
WORK_DIR: ${CI_PROJECT NAME}
BRANCH: ${CI_COMMIT REF_NAME}
REGISTRY: tender-registry:5000
SHARED_PATH: /builds/$CI_PROJECT_PATH

before_script:
- echo ${CI_PROJECT_PATH}
- echo ${SHARED_PATH}

67 | 99

https://prod-tender.maggiolicloud.it/

D5.4 — First version of TeNDER Platform

- touch ${SHARED_PATH}/test file
- pwd

- 1s -11

- docker --version

- docker-compose --version

stages:
- build
- deploy
- list_services
- create_p_images
- promote

build_image:
only:
refs:
- staging
stage: build
script:
- docker --version
- docker info
- docker rmi web-app || true
- docker rmi $REGISTRY/tender-web-app-ubw:sta || true
- echo "Build web app image"
- docker build --no-cache -t web-app -f
deployment/dockerfile/staging/Dockerfile . --build-arg TZ=UTC
- docker tag web-app $REGISTRY/tender-web-app-ubw:sta
- docker push $REGISTRY/tender-web-app-ubw:sta
tags:
- stage

deploy web:
only:
refs:
- staging
stage: deploy
script:
- echo "Remove web app container"
- docker stop web_app || true
- docker rm web_app || true
- echo "Recreate container"
- docker-compose -f deployment/docker-compose-stage.yml up -d --force-
recreate

tags:
- stage
list_apps:
only:
refs:
- staging
stage: list_services
script:
- docker logs web_app
- docker ps

tags:
- stage

create_prod_images:
only:
refs:
- staging
stage: create_p_images
script:
- docker rmi $REGISTRY/tender-web-app-ubw:prod || true

Page 68|99

D5.4 — First version of TeNDER Platform

- docker build --no-cache -t $REGISTRY/tender-web-app-ubw:prod -f
deployment/dockerfile/production/Dockerfile . --build-arg TZ=UTC
- docker push $REGISTRY/tender-web-app-ubw:prod
when: manual
tags:
- stage

promote to staging:

stage: promote

when: on_success

only:
- master

before_script:
- apk --no-cache add git
- export GIT_AUTHOR_NAME="Ubiwhere Release Tools"
- export GIT_AUTHOR_EMAIL="ci@ubiwhere.com"
- mkdir /root/.ssh/ && echo "${SSH_PRIVATE_KEY}" > /root/.ssh/id_rsa
- git config --global http.sslverify "false"

- git remote add maggioli "Error! Hyperlink reference not valid.}"
script:

- git config user.name "Ubiwhere Release Tools"

- git config user.email "ci@ubiwhere.com"

- git pull maggioli staging

- git push maggioli HEAD:staging

Tests

At this stage, the tests implemented are only for auxiliary / utility functions. The main reasons
are:

e A lot of these functions depend on frameworks or data that can change between
browsers and locales, and since the Jest [23] testing environment is locale- and
browser-agnostic, it can pick up on issues that can often go undetected,;

o In future stages, a lot of the frontend structure might change radically, so it was
decided to not implement unit tests for screens and components.

To run the tests, a Powershell or Git Bash terminal with Node.js and npm installed is needed,
then from project’s folder execute the following:

Command:

npm run test

Output:

69 | 99

mailto:GIT_AUTHOR_EMAIL=
mailto:ci@ubiwhere.com

D5.4 — First version of TeNDER Platform

config.js
globalStyles.js
utils.js

src/assets/icons/Moods/Happy
index.js
src/assets/icons/Moods/Sad
index.js
src/components/CustomCalendarDay
utils.js
src/containers/Admin/CreateCaregiver
utils.js 68,69,70
src/containers/Admin/CreateDevice
utils.js
src/containers/LanguageSelector
utils.js
src/containers/Localization
utils.js
src/containers/PatientInfo
utils.js
src/containers/SafetyAndiWellbeing
utils.js
src/containers/SleepDiary
utils.js
src/mocks
mocks.js
src/scenes/Admin/ListDevices
utils.js
src/scenes/Doctor/PatientsList
utils.js
src/scenes/Home

: 13 passed, 13 total
25 passed, 25 total
@ total
17.518s
Ran all test suites.

Figure 42 — Web Ul tests

For better tests comprehension, the following tables will give an overview and explanation
of each test.

Table 16 Utils Component for Custom Calendar Day

Target getDotColor() function

Purpose Checks if correct colors are returned for the
Reminder calendar dots that appear on the
days.

Table 17 Utils Component for Custom List Item

Target parseName() function

Purpose Checks if the function accurately converts a
name in string format to JSON object with
“family” and “given” fields

70 | 99

D5.4 - First version of TeNDER Platform

Table 18 Utils Component for Custom Calendar Day

Target getPatientName() function

Purpose Checks if the function accurately fetches a
patient’s name given a reference string and
patient list, and returns a string of the full
name of the patient concatenated with
their username

Table 19 Utils for Admin’s Container

Target checkLocationValidation() function

Purpose Checks if the function accurately returns
the correct values when supplied with a

Kinect device form and a patient list that
may or may not be empty

Table 20 Utils for Language Selector’s Container

Target getFlagEmoji() function

Purpose Checks if the function accurately returns
the correct country emoji for each of the
available language locales, or no emoji if no
available or valid locale is provided.

Table 21 Utils for Localization’s Container

Target getPatientLocations() function

Purpose Checks if the function accurately returns an
array of strings of each of the Environment
present in a given user’s data

Target formatHourLabel() function

Purpose Checks if the function returns a human-
readable hour string (“HH:MM”) when
provided with a calculated hour from
localization data (ex: 1.30 -> 01:30)

Target secondsToHours() function

Purpose Checks if the function correctly converts a
number of seconds into a number of hours
(ex: 3600 -> 1.00)

71199

D5.4 - First version of TeNDER Platform

Target

secondsToMinutes() function

Purpose

Checks if the function correctly converts a
number of seconds into a number of
minutes (ex: 300 -> 5.00)

Target

secondsToHoursMinutes() function

Purpose

Checks if the function correctly converts a
number of seconds into a formatted hour /
minute string (ex: 3600 -> “1h00m”)

Target

getBackgroundColor() function

Purpose

Checks if the function accurately returns
the intended color for each of the locations
bars to be displayed on the graph

Table 22 Utils for Patient Info’s Container

Target

convertRoleToTranslation() function

Purpose

Checks if the function accurately converts a
provided string to a Snake Case equivalent
used for i18n translation keys (ex: “Formal
Caregiver” -> “formal_caregiver”

Table 23 Utils for Safety and Wellbeing’s Container

Target

getEmotionlcon() function

Purpose

Checks if the function accurately returns
the Happy icon component or Sad icon
component (used in the Emotional State
information component) depending on the
provided emotion string

Target

getEmotionHighlightColor() function

Purpose

Checks if the function accurately returns
the correct color depending on the
provided emotion string (used for color-
coding Emotional State info)

Target

calculateEmotionalState() function

Purpose

Checks if the function accurately converts a
list of Emotional State values into a JSON
object containing the number of “happy”

72199

D5.4 - First version of TeNDER Platform

instances, “sad” instances, and the total
number of values

Table 24 Utils for Sleep Diary’s Container

Target

formatHourLabel() function

Purpose

Checks if the function returns a human-
readable hour string when provided with a
calculated hour from localization data (see
Containers/Localization/Utils)

Target

secondsToHours() function

Purpose

Checks if the function correctly converts a
number of seconds into a number of hours
(see Containers/Localization/Utils)

Target

secondsToMinutes() function

Purpose

Checks if the function correctly converts a
number of seconds into a number of
minutes (see Containers/Localization/Utils)

Target

secondsToHoursMinutes() function

Purpose

Checks if the function correctly converts a
number of seconds into a formatted hour /
minute string (see
Containers/Localization/Utils)

Table 25 Utils for List Devices Admin’s Scenes

Target

generatelnterval() function

Purpose

Checks if the function correctly converts
two ISO format dates into a JSON object
detailing the interval between them in
days, minutes or hours

Table 26 Utils for Patient List Doctor’s Scenes

Target

sortByName() function

Purpose

Checks if the function correctly returns 1 or
-1 depending on alphabetical sorting of 2
provided patient names (this function is

73|99

D5.4 - First version of TeNDER Platform

used as a comparator for an Array.sort()
call)

Target

filterByName() function

Purpose

Checks if the function correctly returns true
or false depending on the correspondence
between a provided search string and a
provided patient (this function is used as a
comparator for an Array.filter() call)

Table 27 Utils for Home’s Scenes

Target

sortByName() function

Purpose

Checks if the function correctly returns 1 or
-1 depending on alphabetical sorting of 2
provided user names (see
Scenes/Doctor/PatientsList/Utils)

Target

filterByName() function

Purpose

Checks if the function correctly returns true
or false depending on the correspondence
between a provided search string and a
provided user (see
Scenes/Doctor/PatientsList/Utils)

Table 28 Utils for Root

Target

parseName() function

Purpose

Checks if the function accurately converts a
name in string format to JSON object with
“family” and “given” fields (see
Components/CustomListitem/Utils)

5.2.6 Smart Band Server (UPM)

Description

For the gathering and processing of accelerometer and heartrate encrypted raw data it was
needed a common server where all the wristbands of the project send this type of data to be
filtered and retrieved from other modules to be used for other purposes.

From this server there are available calls to collect decrypted individual packages (last or

current) or whole day data.

74| 99

D5.4 — First version of TeNDER Platform ‘

In order to save the data, it is used a MongoDB and the API calls are supported from a Flask
module under Python 3.6

Software Dependences

e Docker
e Docker-compose
e MongoDB

Build — Deployment

Build and push the container images:

docker build -t tender_device_api .
docker tag tender_device_api $REGISTRY/tender_device_api:sta
docker push $REGISTRY/tender_device_api:sta

Deploy the service:

docker-compose down
docker-compose up -d

Access endpoints

Stage env:

|https://fitbit-stage-tender.maggiolicloud.it/

Production env:

|https://fitbit-prod-tender.maggiolicloud.it/

CI/CD Pipeline

image:
name: docker/compose:latest
entrypoint: ["/bin/sh", "-c"]

variables:
WORK_DIR: ${CI_PROJECT_NAME}
BRANCH: ${CI_COMMIT REF_NAME}
REGISTRY: tender-registry:5000
SHARED_PATH: /builds/$CI_PROJECT_PATH

before_script:
- docker --version
- docker-compose --version

stages:
- build
- test
- deploy
- list_services
- create_p_images

Page 75|99

D5.4 - First version of TeNDER Platform

build_project:

stage: build

script:
- docker build -t tender_device_api .
- docker tag tender_device_api $REGISTRY/tender_device_api:sta
- docker push $REGISTRY/tender_device_api:sta

tags:
- stage

deploy project:
stage: deploy
script:
- docker-compose down
- docker-compose up -d
tags:
- stage

list_apps:
stage: list_services
script:
- docker-compose logs
- docker-compose ps

tags:
- stage
tests:
stage: test
script:
- tests/test-endpoint.sh
- tests/test-mongo-cnt-status.sh
tags:
- stage

create_prod_images:
stage: create_p_images
script:
- docker tag $REGISTRY/tender_device_api:sta
$REGISTRY/tender_device_api:prod
- docker push $REGISTRY/tender_device_api:prod
when: manual
tags:
- stage

Tests
All the components and the provided endpoints are tested during the deployment phase.

Test backend API:

Table 29 Smart Band backend test

Test name Smart Band Backend

Test Purpose Check the API for smart-band data
Pre-test conditions | Backend API running

Test Tool Bash Automated Testing System (BATS)
Test description 1. Retrieve data from

https://fitbit-stage-tender.maggiolicloud.it/status
2. Check HTTP status code (200 OK)

Test Verdict API is functional

76 | 99

D5.4 — First version of TeNDER Platform

Command:

cd ./tests
./test-endpoint.sh

Output:

v check fitbit-server endpoint

1 tests, @ failures

Test MongoDB:

Table 30 Database test

Test name Smart Band Backend
Test Purpose Check MongoDB availability
Pre-test conditions | MongoDB running
Test Tool Bash Automated Testing System (BATS)
Test description 1. Retrieve operational status of mongoDB container.
2. Check if the container is in running state.
Test Verdict APl is functional
Command:
cd ./tests

./test-mongo-cnt-status.sh

Output:

v/ check MongoDB container

1 tests, © failures

5.2.7 Recommender System
Description

Recommender System module supports the patients profile generation and throw
recommendations based in profile and sensors events.

It consists in a flask module that makes queries to EHR to retrieve useful information related
with possible recommendations and after a processing and clustering process, results are also
posted into EHR to be consumed by mobile and web user interfaces.

Into this service also are included a pseudo-anonymization process to, through a web
interface, transform any word of any language of the included in the project into an
anonymized code that can be safely stored into the database without compromise personal
information. In the same way, this tool also provides the meaning of a given code previously
anonymized.

77 1 99

D5.4 — First version of TeNDER Platform ‘

In addition, the tokens of Fitbit users are stored in this service into a database in order to use
these tokens to call Fitbit API to get wristbands information.

All these functionalities are performed using a flask module and a PostgreSQL database under
Python 3.6

Software Dependences

e Docker
e Docker-compose
e PostgreSQL

Build — Deployment

Build and push docker container images

docker build -t tender_device_api .

docker tag tender_device_api $REGISTRY/tender_device_api:sta
docker push $REGISTRY/tender_device_api:sta

Instantiate service

docker-compose down
docker-compose up -d

Access endpoints

Stage env:
|https://recommender—stage—tender.maggiolicloud.it/

Production env:
|https://recommender—prod—tender.maggiolicloud.it/

CI/CD Pipeline

image:
name: docker/compose:latest
entrypoint: ["/bin/sh","-c"

variables:
WORK_DIR: ${CI_PROJECT_NAME}
BRANCH: ${CI_COMMIT REF_NAME}
REGISTRY: tender-registry:5000
SHARED_PATH: /builds/$CI_PROJECT_PATH

before_script:
- docker --version
- docker-compose --version

stages:

- build

- test

- deploy

- list_services
create_p_images

build_project:
stage: build

Page 78|99

D5.4 - First version of TeNDER Platform

script:
#- docker rmi tender_recommender_api
#- docker rmi --force $REGISTRY/tender_recommender_api:sta
- docker build -t tender_recommender_api .
- docker tag tender_recommender_api $REGISTRY/tender_recommender_api:sta
- docker push $REGISTRY/tender_recommender_api:sta
tags:
- stage

deploy project:
stage: deploy
script:
- docker-compose down
- docker-compose up -d
tags:
- stage

list_apps:
stage: list_services
script:
- docker-compose logs
- docker-compose ps
tags:
- stage

tests:
stage: test
script:
- tests/test-recom-endpoint.sh
- tests/test-postgres.sh
tags:
- stage

create_prod_images:
stage: create_p_images
script:
- docker tag $REGISTRY/tender_recommender_api:sta
$REGISTRY/tender_recommender_api:prod
- docker push $REGISTRY/tender_recommender_api:prod
when: manual
tags:
- stage

Tests

All the components and the provided endpoints are tested during the deployment phase in
the stage environment.

Table 31 Recommender HTTP API test

Test name Recommender Backend

Test Purpose Check the API for smart-band data
Pre-test conditions |Backend API running

Test Tool Bash Automated Testing System (BATS)
Test description 1. Retrieve data from

https://recommender-stage-tender.maggiolicloud.it/status
2. Check HTTP status code (200 OK)

Test Verdict APl is functional

79| 99

D5.4 — First version of TeNDER Platform

Command:

cd ./tests
./test-recom-endpoint.sh

Output:

v check Recommender endpoint

1 tests, @ failures

Table 32 PostgreSQL DB test

Test name Recommended DB
Test Purpose Check MongoDB availability
Pre-test conditions MongoDB running
Test Tool Bash Automated Testing System (BATS)
Test description 1. Retrieve operational status of PostgreSQL containers.
2. Check if the container is in running state
Test Verdict API is functional
Command:
cd ./tests

./ test-postgres.sh

Output:

v check postgress container

1 tests, 0 failures

5.2.8 Questionary Server
Description

The questionnaire server is a platform that needs to support the creation and filling of
questionnaires and, at the same time, to have a structure capable of storing data publicly and
privately. Since TeNDER will provide its services to several organizations, this server has to
provide a solution where users can be associated with an organization and access
management through roles and privacy measures.

To fill these requirements, it instantiated an open-source Data Management System (DMS)
named CKAN [24].

CKAN is a powerful data management system that makes data accessible by providing tools
to streamline publishing, sharing, finding, and using data.

By making open data websites, CKAN is capable of providing pretty good management and
publishing collections of information. It's used by national and local governments, research
institutions, and other organizations that collect a lot of diverse data, which reinforces its
efficiency and usability.

80 | 99

D5.4 — First version of TeNDER Platform

It is open-source software with a good number of active contributors, which gives greater
security in terms of support and constant improvement of the platform. Additionally, CKAN
can be changed and extended with the inclusion of one or more CKAN extensions.

Since CKAN does not provide the creation and filling of questionnaires, the best approach was
the creation of an extension to fulfil this purpose. It’s an objective, efficient, and usable CKAN
extension where users can create and fill questionnaires and manage the gathered data.
Joining the CKAN's necessary tools and functionalities for the easy and correct management
of data (open or not) with this extension, the platform will manage a new way of gathering
information. Additionally, the questionnaires' responses will be stored in specific datasets to
posteriorly be sent to the HAPI FHIR server to centralize all data and provide it to the web and
mobile applications.

Software Dependences

e CKAN 2.8 Docker Image (okfn/docker-ckan)
e Docker

e Python 2.7

e Browser with Javascript support

Build — Deployment

Build the container images
| docker build --no-cache -t tender-ckan-ubw . --build-arg TZ=UTC

Instantiate the service
|docker—compose up -d

Access endpoint

|https://qst—prod—tender.maggiolicloud.it/

CI/CD Pipeline

image:
name: docker/compose:1.21.2
entrypoint: ["/bin/sh", "-c"
variables:
GIT_STRATEGY: clone
WORK_DIR: ${CI_PROJECT NAME}
BRANCH: ${CI_COMMIT_REF_NAME}
REGISTRY: tender-registry:5000
SHARED_PATH: /builds/$CI_PROJECT_PATH
stages:
- build
- tests
- deploy
- list_services
- create_p_images
build_images:
stage: build
script:
- docker build --no-cache -t tender-ckan-ubw . --build-arg TZ=UTC
- docker tag tender-ckan-ubw $REGISTRY/tender-ckan-ubw:sta

81|99

https://qst-prod-tender.maggiolicloud.it/

D5.4 — First version of TeNDER Platform

- docker push $REGISTRY/tender-ckan-ubw:sta
tags:
- stage
deploy_ckan:
stage: deploy
script:
- docker-compose down
- docker-compose up -d
tags:
- stage
list_apps:
stage: list_services
script:
- docker-compose logs
- docker-compose ps
tags:
- stage
tests:
stage: tests
script:
- tests/ckan_execution_status.sh
- tests/ckan-test.sh
tags:
- stage
create_prod_images:
stage: create_p_images
script:
- docker tag $REGISTRY/tender-ckan-ubw:sta $REGISTRY/tender-ckan-ubw:prod
- docker push $REGISTRY/tender-ckan-ubw:prod
when: manual

tags:
- stage
Tests
Table 33 - Test CKAN Execution.
Test name Application server connectivity
Test Purpose Check the execution of the CKAN instance and if the new extension

were correctly installed.

Pre-test conditions | The CKAN running in a local or cloud environment with all the
extensions installed.

Test Tool Shell Script (sh)

Test description 1. In case of CKAN staging environment, perform a curl
command to the IP where the CKAN is instantiated
(curl -I https://qst—stage—tender.maggiolicloud.it)

2. Perform request to CKAN to know which extensions are
installed and running.

Test Verdict CKAN is running and working properly

Command:

|bash ckan_execution_status.sh

Output:

| HTTP/2 200

Page 8299

D5.4 — First version of TeNDER Platform

cache-control: private

content-type: text/html; charset=utf-8

set-cookie:
ckan=b89d69¢9399f9bca321208b495d4463e8c02dd2fa827fe0@76c564e7e923e76c60b11400cC;
Path=/

content-length: 12958

date: Thu, 12 Aug 2021 13:36:02 GMT

Table 34 - Test CKAN Questionnaires Extension

Test name Application server connectivity

Test Purpose Check if the questionnaires extension is working properly

Pre-test conditions The CKAN running in a local or cloud environment with all the
extensions installed.

Test Tool Shell Script (sh)

Test description 1. Perform request to create a questionnaire;

2. Perform request to fill a questionnaire;

3. Perform request to get the questionnaire.

Test Verdict CKAN questionnaire extension is working properly

Command:

|bash ckan-test.sh

Output:

ONNAIRE
AIRE create -d749-4fd6-aa9 . Questionnaire can be now rendered

Figure 47 CKAN test results

5.3 Hybrid Mobile application
Description:

The TeNDER Hybrid Mobile application was designed to help people affected by specific
health and mental diseases. In fact, the Ul is simple and intuitive to facilitate the users’
navigation and is compliant with specific accessibility standards. Currently, the application is
organised on four different sections: Services, Home, Messages and Suggestions (Figure
48) and supports three services:

Page 83|99

D5.4 — First version of TeNDER Platform

e “Health”, collects statistics about patients' health conditions, for instance heart rate
or blood pressure.

e “Reminders” and provides a calendar where the users can manage their activities,
events and appointments.

o “Sleep diary”, which shows statistics and monthly or weekly reports about the
user's sleep quality.

Moreover, the application interfaces were designed to meet the criteria for three end-user
groups:

e Patients;
e (Caregivers;
e Professionals

Services [- - Hesith

2:01
Average Heart Rate Q

@ @L‘l There is no reminder
Health Reminders . == BPM scheduled for today

Steps
Services
z,z @

67 =~

Sleep Diary Safety & Well- ——
being

Last Update

23/08/2021 at 11:40
HH o]

an
an
Services

Services Home

Figure 48 TeNDER's App Sections

Each user can access a profile area where they can modify their information and, in the case
of patients, they can specify their doctor or caregiver, who can monitor the patient using the
same app but a different type of user.

The TeNDER application follows an iterative process to be implemented from the beginning
to the end (more detailsin D5.1). At a very first stage, the tech team proposed a set of services
and wireframes to explain to the end users’ the main ideas to put into practice and show the
potential of the Tender App. Later on, the collection of user requirements was split into two
phases: Pre-pilot requirements gathering and post-pilot requirements gathering: the
first aimed to obtain the first impressions and ideas of the end-users without having a
prototype. The second is focused on the analysis of feedback provided by end-users after the
first pilot execution. Those phases are covered and well explained in paragraph 2 of
the Deliverable D5.1 Report on TeNDER interfaces.

84|99

D5.4 — First version of TeNDER Platform

Software Dependences
Technologies involved in the Tender App development are:

e Google’s Firebase

e |onic 6 (Typescript and HTML/CSS Ul side)
e Android OS 8+

e iOS (in progress)

Installation

The TeNDER mobile application currently supports Android OS 8+ (later on for i0OS), and is
available in following link:

https://drive.google.com/drive/folders/12UbYnozsMDChx3AvkeN8QD3GJEUToFp5

Tests

Given the ever-increasing complexity of the TeNDER app, manual and automated tests were
designed to manage quality control, tests were split into manual and automatic tests.

The manual testing by technical involves verification on features like resolution of the display
(the quality density or color brightness of the display components), space disposition and
frame/bottoms adaptability and layout structure in different devices. Moreover, the
functionalities and Ul features were tested by end users, before and during the pilot
execution.

Automated testing focuses on verifying the correct application functionality, because every
time a piece of source code is modified, the overall application needs to be tested again. With
manual testing, it is not feasible to test the application in a holistic way. The first step to start
automating the process of testing was to describe what the system does: From the
identification of functions that software is expected to perform, a creation of input data and
output based on the specification, the actual test case execution and comparison of actual
and expected outputs.

TeNDER application is the result of a cooperative work where many functionalities are
provided mostly via API, each partner is responsible for making sure their modules or services
are functioning correctly (correct output, reasonable response times, etc). Thus, developers
involved in the implementation of the Ul perform a simple verification during the back-end
and front-end integration.

85 | 99

https://drive.google.com/drive/folders/12UbYnozsMDChx3AvkeN8QD3GJEUToFp5

D5.4 — First version of TeNDER Platform ‘ Te N D E R

O widedata urts an |l 55 css img Media Font Doc WS Manifest Other () Mas blocked cookies [Blocked Requests

Fitter
« Emotional State Detail Name X Headers Preview Response Initiator Timing
| Observation?codeext=emotional st.. v General

Request URL: nttps://hapl o ~jpaserver/
G & G

otionsl_: 2 ¥ 4 _tine
Request Method: GeT
Status Code: ® 200

DG Remote Address: 185.146.161.244:443
Referrer Policy: strict-origin-shen-cross-origin

* Response Headers
access-control-allow-credentials: true
access-control-allow-origin: http://localhost 8100

Z aders: Location,
content-encoding: g:1p
content-length: 317

No emotional state

P !
date: Fri, 11 Jun 2021 12:56:47 GMT
last-modified: Fri, 11 Jun 2021 12:56:47 GMT
vary: origin
Vary: Access-Control-Request-Hethod
Vary: Access-Control-Request-Headers
x-powered-by: KAPT FHIR 5.0.2 REST Server (FHIR Server; FHIR 4.9.1/R4)
x-requestiid: wuxsX7BFK11dNpI0

a B8 + Raguest Headers
‘authority: hapi-prod-tender .maggiolicloud. it
:method: GET

spath: /hapi-fhir-jp _statedo ¥
1/2 requests | 3878/ 387 B transferres & + _time

Jects

Console
B O twpy| © | Fiiter Default fevels ¥ | No lssues

>

Figure 49 An example of API response form console

Filter O Hidedata URLs All [l Js C5S Img Media Font Doc WS Manifest Other ([Has blocked cookies () Blocked Requests

X Headers Preview Response Initator Timing

« Fall Detection Detail Name

] observation?vahse-string=fall_down... | v General

_| fallsvg Request URL: https://hap 1olicloud " -3pd / -string
gt down. | _ra11

Request Method: ceT

0 Status Code: ® 200
Remote Address: 185.146.161.244:443
Referrer Policy: strict-origin-when-cross-arigin

¥ Response Headers
access-control-allow-credentials: true
‘access-control-allow-origin: http://locelbost:8100
access-control-axpose-headers: Location, Content-Location

o X

No falls detected

content-encoding: g:1p
content-length: 300

content-type: applicetion/fhirsjson;charsetUTF-8
date: ton, 14 Jun 2021 €9:15:23 GHT

last-modified: Hon, 18 Jun 2021 69:15:23 G

vary: origin
Vary: Access-Contral-Request-Method

Vary: ccess-Control-Request-Headers

x-powered-by: HAPT FHIR 5.0.2 REST Server (FHIR Server; FHIR 4.9.1/R4)
X request id: TéATyizK8ABYobky

a B8 + Request Headers

zauthority: hapi-prod-tender.maggiolicloud. it

ethod: ceT
path: /hopi-Fhir-fpaserver -string=fall_downdp .

3/6requests | 29kB/ 57k transferre| 98datesgt2021-96-07

Console
B © w~v © Firer Default levels ¥ | NoIssues <

>

Figure 50 An example of API response form Console

The “Reminder” functionality does not refer to an external module or APl so for that
implementation unit test has been performed. The following images show their results.

Page 86|99

D5.4 — First version of TeNDER Platform

Test Case ID BU 001 Test Case Description Test the trigger of new reminders
Created By Marco Di Gioia |Reviewed by Marco Di Gioia Version 1

QA Tester’s Log Check if a new reminder has been created

Tester's Name [Giuseppe DiPuglia Date Tested June 13, 2021 Test Case
S # Prerequisites: S # Test Data
1 1 Reminder Module: PatientID = 26303
2 2 App: username = caregiverl907 @test.com
3 3 App: password = test1234
4 4

Test SceiVerify on task

Step # Step Details Expected Results Actual Results Pass / Fail / Not
executed / Suspended
1 Create a new reminder for Patient|See a new reminder on As Expected Pass
26303 mobile app
2 Query get on SQLite Get 0 row As Expected Pass
3 Run unittest for task No error As Expected Pass
4 Query get on SQLite Get 1 row As Expected Pass

Figure 51 Unit test to check a new reminder creation

Test Case ID BU_002 Test Case Description Test the trigger of changed reminder

Created By Marco Di Gioia Reviewed by Marco Di Gioia Version 1

QA Tester’s Log Check if a reminder has been changed

Tester's Name Giuseppe Di Puglia Date Tested [June 13, 2021 Test Case
S # Prerequisites: S # Test Data

| 1 [BU 001 | [1 [Reminder Module: PatientiD = 26303 |

Test Scenario Verify on task

Step # Step Details Expected Results Actual Results Pass / Fail / Not
executed / Suspended
1 Query get on SQLite There is at least 1 row IAs Expected Pass
2 Run unittest for task No error |As Expected Pass
3 Query get on SQLite last_modify_at field is /As Expected Pass

Figure 52 Unit test to check an updated of an event in the Reminder section

Test Case ID BU 003 Test Case Description Test the assistant vocal reminder feature |
Created By Marco Di Gioia Reviewed by Marco Di Gioia Version 1

OA Tester’s Log Speak Phrase Notice

Tester's Name Giuseppe Di Puglia Date Tested une 13, 2021 Test Case
S # Prerequisites: S # Test Data
| 1 [BU 001 | [1 |Reminder Module: PatientiD = 26303 |

Test Scenario Verify on task

Step # Step Details Expected Results Actual Results Pass / Fail / Not
executed / Suspended
[1 [Run unittest for task [No error |As Expected [Pass
[2 |Listen Google TTS voice |A spoken phrase can be heard __ [As Expected |Pass |

Figure 53 Unit test to check vocal reminder

Page 87|99

D5.4 — First version of TeNDER Platform

c3L vasc LU uue IESL LESE TSI LU | L UL WO I YU L T
reated By Marco Di Gioia |Reviewed by Marco Di Gioia Version 1
)A Tester’s Log Speak Phrase Event
‘ester's Name [Giuseppe Di Puglia Date Tested June 13, 2021 Test Case
S# Prerequisites: S # Test Data
1 BU_001 1 Reminder Module: PatientID = 26303
2 2
3 3
4 4

‘est Scenario Verify on task

Step # Step Details Expected Results Actual Results Pass / Fail / Not
executed /
1 Run unittest for task speak_phrase |No error As Expected Pass
2 Listen Google TTS voice A spoken phrase can be |As Expected Pass
2 Niarn: Aat An SO ita Ciret rrias hae etata—2 Ae Evnartad Dace

Figure 54 Unit test to check speak phrase event

Test Case ID BU_002 Test Case Description Test the deletion of a reminder

Created By Marco Di Gioia]Reviewed by Marco Di Gioia Version 1

QA Tester’s Log Check if a reminder has been deleted

Tester's Name Giuseppe Di Puglia Date Tested June 13, 2021 Test Case
S # Prerequisites: S # Test Data

[1 [BU 001 | [1 [reminder Module: PatientlD = 26303 |

Test Scenario Verify on task

Step # Step Details Expected Results Actual Results Pass / Fail / Not
executed /
1 Query get on SQLite [There is at least 1 row As Expected Pass
2 Run unittest for task [No error As Expected Pass
3 Query get on SQLite |state field is -1 As Expected Pass

Figure 55 Unit test to check reminder deletion

6 APPLICATION PROGRAMABLE INTERFACES

TeNDER platform provides APIs for interconnection with external EHR systems and the
communication between the internal services of the ecosystem. The APIs that are accessible
via the public network are integrated with the authorization and authentication server and
support secure connection over HTTPS protocol. On the other hand, the internal APIs are
accessible only via the private internal network in TeNDER cloud infrastructure, but they can
be offered to outside services if needed in the future, following the same approach. At this
point of the development, the APIs that are public are the ones from the HAPI-FHIR server
and the internal ones are (a) the Remote DB, (b) the Smart Band and c.

To enhance the interconnection with the external EHR systems and the internal services the
consortium decided to create a special documentation server that provides the appropriate
documentation for all the available RESTful APIs of the platform. The TenDER's
documentation is available on the URL:

| https://docs-stage-tender.maggiolicloud.it/
and it supports the following specifications:

e OpenAPI [25] is an API description format for REST APIs. An OpenAPI file describes
the entire API, including: (a) the available endpoints (/users) and operations on each
endpoint (GET /users, POST /users); (b) operation parameters Input and output for

88 | 99

D5.4 — First version of TeNDER Platform ‘

each operation; (c) authentication methods; (d) contact information; (e) license,
terms of use etc.

The API specifications can be written in YAML or JSON. The format is easy to learn
and readable to both humans and machines.

e Swagger is a set of open-source tools built around the OpenAPI Specification and it
can be used for design, build, document, and consume REST APIs. The major Swagger
tools include: (a) swagger Editor [26], which is a browser-based editor where you can
write OpenAPI specs; (b) swagger Ul [27], which renders OpenAPI specs as interactive
APl documentation and (c) swagger Codegen [28], which generates server stubs and
client libraries from an OpenAPI spec.

&« @ docs-stage-tendermaggiclicloud.it oD oHa &+ = M

Select a definttion TERDER M5 A w

TENDER OB AFI

TeNDER DB AP| |

TEHDER FITBIT &F1

L=l Bul Fi Jul 30 15:11.50 UTC 2021
Apache 210

Figure 56 TeNDER's documentation server

Page 89|99

http://editor.swagger.io/
https://swagger.io/swagger-ui/
https://github.com/swagger-api/swagger-codegen

D5.4 — First version of TeNDER Platform

6.1 EHR API (HL7) (UBI)

The HAPI FHIR instance provides a Java API for HL7 FHIR Clients and Servers [29]. This means
that the API follows the structure and rules of HL7 resources, which garantees the correct
requests and workflow between end-users and the platform.

In the following image (Figure 57) the EHR API’s Swagger can be partially visualize, which is
already deployed in

https.//docs-stage-tender.magqgiolicloud.it/?urls.primaryName=TENDER%20HAPI%20FHIR.
All available requests are listed and ready to be tested, having examples to facilitate the
developer understading.

& & 8 docs-stage-tender.maggiolicloud.it/?urls.primaryName=TE... & +r * » ﬁ :

LTSI LT TEMDER HAPI FHIR ~

HAPI-FHIR API©

Fast Healthcare Interoperability Resources (FHIR, pronounced "Fire™) defines a set of "Resources” that represent granular clinical concepis. The
resources can be managed in isclation, or aggregated inte complex documents. Technically, FHIR is designed for the web; the resources are
based on simple XML or JSCON structures, with an hitp-based RESTiul protocol where each resource has predictable URL. YWhere possible, open
intemet siandards are used for data representation

Servers

[htips:iifhir-stage-tender.maggiclicloud.ithapi-fhirjpaserverfhir -

Account v
GET FAccount ™
POST FAccount -
GET SAccount/{id} &

SAccount/{id} -
‘m JfAccount/{id} o
GET SAccount/{id}/_history o

GET SAccount/_history ™

GET /Account/{id}/_history/{vid} &

Figure 57 APl documentation of the HAPI FHIR server

At the bottom of the page, the schema of each available resource is exposed. Through Figure
58, is possible to verify the ‘Account’ resource, providing: all its attributes; if they are
mandatory; its type, and overall structure. Once again, this information is crucial for the
efficient and fast development of components that will communicate with the server.

Page 90|99

https://docs-stage-tender.maggiolicloud.it/?urls.primaryName=TENDER%20HAPI%20FHIR

D5.4 — First version of TeNDER Platform ‘

& docs-stage-tender.maggiolicloud.it/?urls.primaryName=TENDER%20HAPI%20FHIR#/VisionPrescription/get_VisionPrescription__id___history_ vid_

Schemas
Account v {
resourceType* string
minLength: 1
id* string
minLength: 1
text*
~
status* string
minLength: 1
div* string
minLength: 1
}
identifier*
¥ [...]
status* string
minLength: 1
type*
i B ool
name* string
minLength: 1
subject*
: , > L.l
servicePeriod*
> {...}
coverage*
g > L.l
owner*
> {...}
description* string
minLength: 1
meta*
> L.}
}

ActivityDefinition >
AdverseEvent »
Allergyintolerance »
Appointment »

Figure 58 HAPI FHIR server APl schemas

For a better view and understanding of the schemas and their attributes, the following link
(https://www.hl7.org/fhir/resourcelist.html) lists all the resources where each resource can
be accessed, providing a better explanation. The following image (Figure 59) provides an
example of the ‘Patient’ resource’s structure in JSON format.

Page 91|99

https://www.hl7.org/fhir/resourcelist.html

D5.4 — First version of TeNDER Platform . Te N D E R

t >

"resourceType" : "Patient",

// from Resource: id, meta, implicitRules, and language

// from DomainResource: text, contained, extension, and modifierExtension
"identifier™ : [{ Identifier }], // An identifier for this patient

"active" :!: <boolean>, ¢/ wWhether this patient's record is in actiwve use
"name" : [{ HumanMame }], 4/ A name associated with the patient
"telecom"™ : [{ ContactPoint }], // A contact detail for the indiwvidual
"gender" : "<code>", // male | female | other | wunknown

"birthDate" : "=date>", // The date of birth for the individual
S/ deceased[x]: Indicates if the individual is deceased or not. One of these 2:
"deceasedBoolean" : <boolean>,
"deceasedDateTime" : "<dateTime=>",
"address" : [{ address }], ¢/ An address for the indiwvidual
"maritalStatus" : { codeableconcept }, // Marital (ciwil) status of a patient
S/ multipleBirth[x]: whether patient is part of a multiple birth. One of these 2:
"multipleBirthBoolean” : <boolean>,
"multipleBirthInteger" : <integer:>,
"photo" : [{ Attachment }], // Image of the patient
"contact"™ : [{ // A contact party (e.g. guardian, partner, friend) for the patient
"relationship" : [{ codeableconcept }], // The kind of relationship
"name" : { HumanMame }, // A name associated with the contact person
"telecom” : [{ contactPoint }], // A contact detail for the person
"address" : { Address }, // Address for the contact person
"gender"” : "<code>", // male | female | other | unknown
"organization" : { Reference(Organization) }, // C€? Organization that is associated with the
contact
"period" : { Period } // The period during which this contact person or organization is wvali
d to be contacted relating to this patient
.
"communication" : [{ // A language which may be used to communicate with the patient about his
or her health
"language" : { CodeableConcept }, // R! The language which can be used to communicate with
the patient about his or her health
"preferred” : <boolean> // Language preference indicator
1.
"generalPractitioner™ : [{ Reference(Organization|Practitioner|
Practitionerrole) }], // Patient's mominated primary care provider

"managingorganization"” : { rReference(organization) }, // Organization that is the custodian of
the patient record
"link" : [{ // Link to another patiemt resource that concerns the same actual person

"other"™ : { Reference(Patient|RelatedPerson) }, #/ Rl The other patient or related person r
esource that the link refers to
"type" : "=code>" // R! replaced-by | replaces | refer | seealso
1
1

Figure 59 Patient resource structure
(from: https.//www.hl7.org/fhir/patient.html)

Still in this page, the filters, relationships and attribute’s type explanation can be found or
easily redirected to the correct page.

For the TeNDER case, it was used a Postman collection [30] to reinforce and improve the
documentation and facilitate the API testing. The collection contains the main requests with
several examples, grouped by resource. The main purpose to use it was the tool to define
different environments, which helps the developers to switch between environments in
seconds. Important to mention that the collection is in continuous improvement and the new
version are always provided to avoid deprecated requests or examples.

Page 9299

D5.4 — First version of TeNDER Platform

v HAPI FHIR Requests *
> {9 Auth Requests GET e _fhirj}fhapi-fhir-jp ?_count=2008i ilitation Room
v [GetUsers
Params @ Authorization @ Headers (8) Body Tests Settir
€7 Get Patients associated wit. —_—
HcetPatientgasscalaiedivi Type - o () Heads up! These parameters hold sensitive data. To keep this data secure while working in a collab

GET Get Patient Learn more about variables 2

ET Get Patient Copy header will be automatically generated when
est. Learn mare about authorization

ET Get Patients from specifc O.. : Token

ET Get Patients with Conditions
ET Get Patient Main Condition
ET Get Patients with a specific...
ET Get Patients with a specific...
ET Get Patients with Groups
£7 Get Patlents with Both
£1 Get Health Professionals fr...
ET Get Practitioner
£7 Get Social Professionals fro...
=T Get Other Professionals fro...
£7 Get Formal Caregivers Fro...
£ Get practitionerrole by prac.
£ Get Informal Caregivers / F...
5 Create Users

3 Update Users

[Delete Users

et a response

£ Services
5 Locations
5 Groups
9 Devices

Figure 60 Part of Postman collection

6.2 Remote DB Rest APIs

TeNDER Mongo DB API provides the entry point for data coming from devices and sensors to
the TeNDER high-level subsystem. The main purpose of this implementation is to provide a
unified access to remote MongoDB of the TeNDER using HTTP RESTful API. This approach is
very useful because every service can access the database without any specific dependencies
(i.e. software libraries/plugins etc). The APl is provided on two endpoints, over authenticated
https for external access and over http for access by TeNDER services from the internal
network.

Page 93|99

D5.4 — First version of TeNDER Platform

< C @ docs-stage-tender.maggiclicloud.it a &« & & A

@ svageer S p—
SMA

BTEEAR

TeNDER DB APIm

ender .maggiolicloud. 1tfapi/v/sumarization |

Last Build: Fri Jul 30 15:11:50 UTC 2021

Apache 2.0

Schemes

HTTPS w

adb v
Ger W n
POST [WETLY]
Ea N /adb/{id}/ -
fadb/{id}/ =
fadb/{id}/ =
‘m /adb/{id}/)

band v
Han | /band/ =
POST WLTULY]
Ea0 | sband/{id}/ o
/band/{id}/ o
/band/{id}/ o

‘m Jband/{id}/ o)

Figure 61 APl documentation of the Remote Mongo DB

6.3 Smart Band APIs

Health Wearable REST API manages all the access of data from bands into the project
database with the corresponding needed pre-process, as the encrypting. The main purpose
of this APl is to offer a good interface between bands and database and between data and
other modules of the project which need consume this data as well. This API is structured

Page 94|99

D5.4 — First version of TeNDER Platform

with one POST endpoint to save data and other four GET endpoints to receive this data
considering different filtering approaches.

& & & docs-stage-tender.maggiolicloud.it/?urls.primaryName=TE.. Q@ ¥ * % ﬁ\ :

L I LT TENDER FITBIT APL w

TeNDER Health Weareable REST AP| 2

AP to handle data from weareable devices related fo health. The development of this service is provided by GATV, a research group from the
Technical University of Madrid

12

Terms of servi

Contact the developer

Apache 2.0

Servers
[https:/ifitbit-stage-tender.maggiclicloud.it'apiftender - HTTPS Server -~

data pata related endpainis N
05 Jband/data Send data from an specific device i
GE] JSband/data/{data_type}/last Getlastdatafrom an specific datatyps
Schemas v
InputData »

AccelerometerMeasureSchema »
HeartrateMeasureSchema »
ApiResponse 3

ErrorResponse 3

Figure 62 APl documentation of the Smart Band API

Page 95|99

D5.4 - First version of TeNDER Platform

7 CONCLUSIONS

In this deliverable, we have described the first version of the TeNDER platform as it is used in
the first wave of pilots. The document presents the tools and methodologies used to drive
the software development in a CI/CD approach, in which the TeNDER development cycle is
based. This has been used to facilitate the development efforts in WP3 and WP4, providing
the tools and methodologies to embrace this development philosophy. Moreover, the use of
software management and automated continuous integration tools (i.e. GitLab, pipelines etc)
allowed the developers to integrate the outcome of the work in an agile way, continuously
pushing improvements and integrating them progressively. This approach has allowed us to
avoid the likely risk of needing a complex and long phase of integration at the end of the
development process, too late to ensure the suitable level of software quality. Furthermore,
we designed and deployed an open-source monitoring system to collect information
regarding the resource allocation from all the deployment environments and for all services.
Finally, we listed and detailed the first version of the integration and qualification tests of the
platform, which have been designed and developed to ensure the functionalities expected
for the first version. As the development process continues, new services and applications
will be added, so during the remaining time of the project we will focus on the improvement
of the current integration and qualification testing procedures and on the design of new ones.
The last deliverable of the WP5 (D5.5) will present the final version of the TeNDER platform
with all its components and the tests.

96 | 99

D5.4 - First version of TeNDER Platform

REFERENCES

[1] “Cycle Time ” en.wiktionary.org. https://en.wiktionary.org/wiki/cycle_time
(accessed Aug. 23, 2021).

[2] P. Webteam, “Continuous Delivery Vs. Continuous Deployment” puppet.com.
https://tinyurl.com/zsoenks (accessed Aug. 23, 2021).

[3] “Continuous Integration,” martinfowler.com.
https://martinfowler.com/articles/continuousintegration.html#PracticesOfContinuo
usintegration (accessed Aug. 23, 2021).

[4] “TeNDER GitLab Repository” TeNDER GitLab. http.//tendergitlab.maggiolicloud.it/.
(accessed Aug. 23, 2021).

[5] “TeNDER production deployment” TeNDER GitLab.
https://tendergitlab.maggiolicloud.it/panos_k/tnd-production (accessed Aug. 23,
2021).

[6] W. Project, “Watir Project,” watir.com. http://watir.com/.
https://robotframework.org (accessed Aug. 23, 2021).

[7] “Robot Framework,” robotframework.org. https://robotframework.org (accessed
Aug. 23, 2021).

[8] “pytest: helps you write better programs — pytest documentation,” pytest.org.

https://pytest.org/en/latest/ (accessed Aug. 23, 2021).

[9] “Welcome to bats-core’s documentation” bats-core.readthedocs.io. https://bats-
core.readthedocs.io/en/stable/index.html (accessed Aug. 23, 2021).

[10]“Apache JMeter” Apache.org, 2019. https://jmeter.apache.org/. (accessed Aug. 23,
2021).

[11]“ab - Apache HTTP server benchmarking tool,” Apache.org, 2019.
https://httpd.apache.org/docs/2.4/programs/ab.html. (accessed Aug. 23, 2021).

[12]“TeNDER integration tests” TeNDER GitLab. http://tendergitlab.maggiolicloud.it/
panos_k/tnd-int-tests. (accessed Aug. 23, 2021).

[13]“RabbitMQ PerfTest,” rabbitmgq.github.io. https://rabbitmq.github.io/rabbitmg-
perf-test/stable/htmlsingle/ (accessed Aug. 23, 2021).

[14]“GitHub - prometheus/prometheus: The Prometheus monitoring system and time
series database.,” GitHub. https://github.com/prometheus/prometheus (accessed

Aug. 23, 2021).

97 | 99

https://tinyurl.com/zsoenks
https://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuousIntegration
https://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuousIntegration
http://watir.com/
https://robotframework.org/
https://robotframework.org/
https://pytest.org/en/latest/
https://bats-core.readthedocs.io/en/stable/index.html
https://bats-core.readthedocs.io/en/stable/index.html
https://jmeter.apache.org/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://rabbitmq.github.io/rabbitmq-perf-test/stable/htmlsingle/
https://rabbitmq.github.io/rabbitmq-perf-test/stable/htmlsingle/
https://github.com/prometheus/prometheus

D5.4 - First version of TeNDER Platform

[15]“GitHub - prometheus/pushgateway: Push acceptor for ephemeral and batch jobs.,”
GitHub. https://github.com/prometheus/pushgateway (accessed Aug. 23, 2021).

[16]“GitHub - prometheus/alertmanager: Prometheus Alertmanager,” GitHub.
https://github.com/prometheus/alertmanager (accessed Aug. 23, 2021).

[17]“GitHub - grafana/grafana,” GitHub” . https://github.com/grafana/grafana.
(accessed Aug. 23, 2021).

[18]“GitHub - netdata/netdata: Real-time performance monitoring” GitHub.
https://github.com/netdata/netdata (accessed Aug. 23, 2021).

[19]“GitHub - google/cadvisor,” GitHub. https://github.com/google/cadvisor (accessed
Aug. 23, 2021).

[20]“Traefik Labs: Makes Networking Boring,” Traefik Labs: Makes Networking Boring.
https://traefik.io/ (accessed Aug. 23, 2021).

[21]“Keycloak,” www.keycloak.org. https://www.keycloak.org/ (accessed Aug. 23,
2021).

[22]“Http - FHIR v4.0.1,” www.hl7.org. https://www.hl7.org/fhir/http.html (accessed
Aug. 23, 2021).

[23]“Jest - Delightful JavaScript Testing,” Jestjs.io, 2017. https://jestjs.io/ (accessed Aug.
23,2021).

[24]“CKAN - The open source data management system,” ckan.org. https://ckan.org/
(accessed Aug. 23, 2021).

[25]“GitHub - OpenAPI-Specification/3.0.2.md at main - OAl/OpenAPI-Specification,”
GitHub. https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.2.md (accessed Aug. 23, 2021).

[26]“Swagger Editor,” editor.swagger.io.
http://editor.swagger.io/?_ga=2.93506717.1281844120.1627895131-
200039773.1627656792 (accessed Aug. 23, 2021).

[27]1“API Code & Client Generator | Swagger Codegen,” Swagger.io, 2021.
https://swagger.io/swagger-codegen/ (accessed Aug. 23, 2021).

[28]“REST APl Documentation Tool | Swagger Ul,” Swagger.io, 2021.
https://swagger.io/swagger-ui/ (accessed Aug. 23, 2021).

[29]“GitHub - hapifhir/hapi-fhir: HAPI FHIR - Java APl for HL7 FHIR Clients and Servers,”
GitHub. https://github.com/hapifhir/hapi-fhir (accessed Aug. 23, 2021).

98 | 99

https://github.com/prometheus/pushgateway
https://github.com/prometheus/alertmanager
https://github.com/grafana/grafana
https://github.com/netdata/netdata
https://github.com/google/cadvisor
https://traefik.io/
https://www.keycloak.org/
https://www.hl7.org/fhir/http.html
https://jestjs.io/
https://ckan.org/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md
http://editor.swagger.io/?_ga=2.93506717.1281844120.1627895131-200039773.1627656792
http://editor.swagger.io/?_ga=2.93506717.1281844120.1627895131-200039773.1627656792
https://swagger.io/swagger-codegen/
https://swagger.io/swagger-ui/
https://github.com/hapifhir/hapi-fhir

D5.4 — First version of TeNDER Platform . Te N D E R

[30]Postman, “Postman | The Collaboration Platform for APl Development,” Postman,

2021. https://www.postman.com/.

Page 99|99

https://www.postman.com/

